Skip to main content
Log in

Damping of loaded Rayleigh waves on lightly loaded interfaces: Application to the Kapitza conductance

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

We present two methods for solving the Stoneley equation for lightly loaded surfaces, which we apply to interfaces between, on the one hand, copper and quartz, and, on the other hand, liquid and solid 4He, solid hydrogen, deuterium, and neon. We look for solutions with velocities near the Rayleigh wave on the free surface of the heavy medium. The methods for solving the equation are, respectively, a first-order expansion near the Rayleigh velocity and a computer iteration. We show that both methods give nearly identical results for the damping, and therefore the first-order approximation gives a useful analytical expression for the damping of loaded Rayleigh waves. The approximate result for the velocity increment is poor. By applying the results to the Kapitza conductance problem we are able to put forward an explanation for some of the experimental features, and to make suggestions for further experimental and theoretical work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Lord Rayleigh, Proc. Lond. Math. Soc. 17, 4 (1887); Theory of Sound (Dover, New York, 1945).

    Google Scholar 

  2. H. Kolsky, Stress Waves in Solids (Dover, New York, 1963).

    Google Scholar 

  3. P. M. Morse, Vibrations and Sound (McGraw-Hill, New York, 1948).

    Google Scholar 

  4. A. E. H. Love, Some Problems in Geodynamics (Cambridge U. Press, Cambridge, 1911).

    Google Scholar 

  5. W. M. Ewing, W. S. Jardetsky, and F. Press, Elastic Waves in Layered Media (McGraw-Hill, New York, 1957).

    Google Scholar 

  6. K. F. Graff, Wave Motion in Elastic Solids (Oxford U. Press, Oxford, 1975).

    Google Scholar 

  7. A. Oliner, ed., Acoustic Surface Waves (Springer Verlag, Berlin, 1978).

    Google Scholar 

  8. J. J. Campbell andW. R. Jones, IEEE Trans. SU 17, 71 (1970).

    Google Scholar 

  9. J. C. A. svan der Sluijs and M. J. van der Sluijs, J. Low Temp. Phys. 42, 403 (1981).

    Google Scholar 

  10. P. Taborek and D. Goodstein, Phys. Rev. B 22, 1550 (1980).

    Google Scholar 

  11. R. Stoneley, Proc. Roy. Soc. A 106, 416 (1924).

    Google Scholar 

  12. H. Koppe, Z. Angew. Math. Mech. 28, 355 (1948).

    Google Scholar 

  13. N. G. Brower, D. E. Himberger, and W. G. Mayer, IEEE Trans. SU 26, 306 (1979).

    Google Scholar 

  14. J. C. Bishop and J. C. A. van der Sluijs, J. Low Temp. Phys. 39, 93 (1980).

    Google Scholar 

  15. C. L. Reynolds and A. C. Anderson, Phys. Rev. B 9, 4114 (1974).

    Google Scholar 

  16. C. L. Reynolds and A. C. Anderson, Phys. Rev. B 11, 5466 (1977).

    Google Scholar 

  17. J. Wilks, The Properties of Liquid and Solid Helium (Oxford U. Press, Oxford, 1967).

    Google Scholar 

  18. R. Wanner and H. Meyer, J. Low Temp. Phys. 11 715 (1973).

    Google Scholar 

  19. G. L. Pollack, Rev. Mod. Phys. 41, 48 (1969).

    Google Scholar 

  20. N. S. Snyder, Cryogenics 10, 89 (1970).

    Google Scholar 

  21. L. J. Challis, J. Phys. C 7, 481 (1974).

    Google Scholar 

  22. J. P. Harrison, J. Low Temp. Phys. 37 467 (1979).

    Google Scholar 

  23. I. M. Khalatnikov, Zh. Eksp. Teor. Fiz. 22, 687 (1951).

    Google Scholar 

  24. H. Haug and K. Weiss, Phys. Lett. A 40, 1 (1972).

    Google Scholar 

  25. R. E. Peterson and A. C. Anderson, Phys. Lett. A 40, 372 (1972).

    Google Scholar 

  26. J. L. Opsal and G. L. Pollack, Phys. Rev. A 9, 2227 (1974).

    Google Scholar 

  27. J. T. Folinsbee and A. C. Anderson, Phys. Rev. Lett. 31, 1580 (1973).

    Google Scholar 

  28. A. C. Anderson, J. I. Connally, and J. C. Wheatly, Phys. Rev. 135A, 910 (1964).

    Google Scholar 

  29. A. W. Pattullo and J. C. A. van der Sluijs, in Phonon Scattering in Condensed Matter, H. J. Maris, ed. (Academic Press, New York, 1980).

    Google Scholar 

  30. L. J. Challis, K. Dransfeld, and J. Wilks, Proc. Roy. Soc. A 260, 31 (1961).

    Google Scholar 

  31. E. A. Jones and J. C. A. van der Sluijs, Cryogenics 13, 535 (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Sluijs, J.C.A., van der Sluijs, M.J. Damping of loaded Rayleigh waves on lightly loaded interfaces: Application to the Kapitza conductance. J Low Temp Phys 44, 223–245 (1981). https://doi.org/10.1007/BF00120774

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00120774

Keywords

Navigation