Skip to main content
Log in

Decoherence Under a Heat Flux Near the Superfluid Transition in 4He

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Measurements of heat transport at the transition from perfect thermal superconductivity to nonlinear heat diffusion in pure 4He provide a very sensitive probe of matter wave coherence. Superfluid heat transport is proportional to the product of the superfluid density and the superfluid velocity, which are both directly related to the superfluid order parameter. From dynamic scaling theory, the correlation length near the superfluid transition provides a measure of the length over which phase fluctuations of the order parameter persist. Our measurements suggest that both the hydrostatic pressure variation within the liquid helium column, together with the heat flux Q, limit the otherwise divergent correlation length near the superfluid transition. Future measurements planned for the microgravity laboratory will provide the fast extensive experimental test of a renormalized, field theoretic description of heat transport near the superfluid transition. It will also provide a conclusive experimental study of the influence of hydrostatic pressure effects and dynamical effects on the correlation length. A new class of microgravity experiments is proposed that will permit measurements to within 10 pK of the superfluid transition temperature, allowing an entirely new class of ultra-accurate scientific investigations to be performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. The only impurity in 4He that remains liquid is the isotope 3He, which may be reduced in concentration to less than 10-12 [P.C. Hendry and P.V.E. McClin-tock, Cryogenics 25, 526 (1985)]. We typically use isotopic purified 4He with a residual atomic concentration of 'He of less than 8. 10–lo. During our mea-surements, even our lowest value of Q will heat-flush [R.P. Behringer, J. Low Temp. Phys. 62, 15 (1986)] this residual 3He to the cold endplate of the cell, and hence out of the measurement region between the thermometers. This low 3He concentration is far too sparse to form a monolayer on the cold endplate.

  2. V. L. Ginzburg and A.A. Sobyanin, Phys. Lett. 69A, 417 (1979); J. Low Temp. Phys. 49, 507 (1982).

    Google Scholar 

  3. J. A. Lipa, D. R. Swanson, J.A. Nissen, T.C.P. Chui, and U.E. Israelsson, Phys. Rev. Lett. 76, 944 (1996).

    Google Scholar 

  4. J. A. Lipa, D. R. Swanson, J.A. Nissen, P.R. Williamson, K. Geng, D.A. Stricker, T.C.P. Chui, U.E. Israelsson, and M. Larson, J. Low Temp. Phys. 113, 849 (1998).

    Google Scholar 

  5. W.Y. Tam and G. Ahlers, Phys. Rev. B 32, 5932 (1985); 33, 193 (1986).

    Google Scholar 

  6. M. Dingus, F. Zhong, and H. Meyer, J. Low Temp. Phys. 65, 185 (1986); M. Dingus, F. Zhong, J. Tuttle, and H. Meyer, J. Low Temp. Phys. 65, 213 (1986).

    Google Scholar 

  7. For a review, see V. Dohm, Z. Phys. B 60, 61 (1985).

    Google Scholar 

  8. R. Haussmann and V. Dohm, Phys. Rev. Lett. 67, 3404 (1991); Z. Phys. B 87, 229 (1992).

    Google Scholar 

  9. R. Haussmann and V. Dohm, J. Low Temp. Phys. 89, 429 (1992); Phys. Rev. B 46, 6361 (1992).

    Google Scholar 

  10. R. Haussmann, J. Low Temp. Phys. 114, 1 (1999).

    Google Scholar 

  11. P. Weichman, A. Prasad, R. Mukhopadhyay, and J. Miller, Phys. Rev. Lett., 80, 22 (1997); P. Weichman and J. Miller, J. Low Temp. Phys. 119, 155, (2000).

    Google Scholar 

  12. T.C.P. Chui, D.L. Goodstein, A. W. Harter, and R. Mukhopadhyay, Phys. Rev. Lett., 77, 1793 (1996).

    Google Scholar 

  13. R.A. Ferrell, N. Menyhard, H. Schmidt, F. Schwabl, and P. Szepfalusy, Phys. Rev. Lett. 18, 891 (1967); Phys. Lett. 24A, 493 (1967); Ann. Phys. (NY) 47, 565 (1968).

    Google Scholar 

  14. P. Day, W. Moeur, S. McCready, D. Sergatskov, and R. Duncan, Phys. Rev. Lett., 81, 2474 (1998).

    Google Scholar 

  15. B.J. Klemme, M.J. Adriaans, P.K. Day, D.A. Sergatskov, T.L. Aselage, and R.V. Duncan, J. Low Temp. Phys. 116, 133 (1999).

    Google Scholar 

  16. F-C. Liu and G. Ahlers, Physica (Amsterdam) 194B-196B, 597 (1994).

    Google Scholar 

  17. H.J. Mikeska, Phys. Rev. 179, 166 (1969).

    Google Scholar 

  18. W.A. Moeur, P.K. Day, F-C. Liu, S.T.P. Boyd, M.J. Adriaans, and R.V. Duncan, Phys. Rev. Lett., 78, 2421 (1997).

    Google Scholar 

  19. R. Nelson and R.V. Duncan, unpublished.

  20. Science Requirements Docurnent for Critical Dynamics in Microgravity, JPL Document D-18698.

  21. R. L. Kautz and F. L. Lloyd, Appl. Phys. Lett. 51, 2043 (1987).

    Google Scholar 

  22. R. V. Duncan, IEEE Trans. Instru. and Meas. 40, 326 (1991); Physica B 1658&166, 101 (1990); D. H. Dunlap and R. V. Duncan, J. Appl. Phys. 71, 6177–6181 (1992); Supercond. Sci. Technol. 4, 413–415 (1991).

    Google Scholar 

  23. A. K. Jain, J. E. Lukens, and T-S. Tsai, Phys. Rev. Lett. 58, 1165 (1987).

    Google Scholar 

  24. T. C. P. Chui, D. R. Swanson, M.J. Adriaans, J. A. Nissan, and J. A. Lipa, Phys. Rev. Lett. 69, 3005 (1992).

    Google Scholar 

  25. P. K. Day, I. Hahn, and T. C. P. Chui, J. Low Temp. Phys. 107, 359 (1997); P. K. Day, private communication.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duncan, R.V., Babkin, A.V., Sergatskov, D.A. et al. Decoherence Under a Heat Flux Near the Superfluid Transition in 4He. Journal of Low Temperature Physics 121, 643–652 (2000). https://doi.org/10.1023/A:1017579914660

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017579914660

Keywords

Navigation