Skip to main content
Log in

Vortex mutual friction in superfluid3He

  • Articles
  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We give a full account of our extensive measurements of vortex mutual friction in rotating superfluid3He, in both the A- and B-phases. The B-phase results are in qualitative agreement with a theory based on the concept of “spectral flow”; the agreement becomes quantitative if an effective energy gap of 0.63Δ is used, but the justification for such a subtitution is not clear. The vortex core transition, at first not seen because of metastability and hysteresis, has now been observed. Detailed investigation suggests that the high temperature vortex state is a temperature dependent mixture of least two vortex types. The A-phase mutual friction is found to be well described by two hydrodynamic coefficients, the orbital viscosity and the orbital inertia. The latter corresponds to an orbital angular momentum per Cooper pair of (0.0015±0.0017) h, consistent with the prediction of the spectral flow theory. We find that the most uniforml texture is obtained by cooling through Tc while rotating, and then stopping rotation. Detailed investigation of textural memory effects shows that the uniforml-up andl-down textures are associated with opposite directions of rotation. We discuss the various types of texture that may be formed in our experiments. Finally, we compare our mutual friction results with those found in4Hell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T-L. Ho and N. D. Mermin,Phys. Rev. B 21, 5190 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  2. H. E. Hall,Adv. Phys. 9, 89 (1960).

    Article  ADS  Google Scholar 

  3. R. J. Donnelly,Quantized Vortices in Helium II, Cambridge University Press, Cambridge (1991) p. 89.

    Google Scholar 

  4. J. R. Hook, T. D. C. Bevan, A. J. Manninen, J. B. Cook, A. J. Armstrong, and H. E. Hall,Physica B 210, 251 (1995).

    Article  ADS  Google Scholar 

  5. H. E. Hall, P. L. Gammel, and J. D. Reppy,Phys. Rev. Lett. 52, 1701 (1984).

    Article  ADS  Google Scholar 

  6. M. Krusius, Y. Kondo, J. S. Korhonen, and E. B. Sonin,Phys. Rev. B 47, 15113 (1993).

    Article  ADS  Google Scholar 

  7. H. Alles, J. P. Ruutu, A. V. Babkin, P. J. Hakonen, and E. B. Sonin,J. Low Temp. Phys. 102, 411 (1996).

    Article  Google Scholar 

  8. D. J. Thouless, P. Ao, and Q. Niu,Phys. Rev. Lett.,76, 3758 (1996); see also C. Wexler,Phys. Rev. Lett. 79, 1321 (1997).

    Article  ADS  Google Scholar 

  9. J. P. Pekola, J. T. Simola, P. J. Hakonen, M. Krusius, O. V. Lounasmaa, K. K. Nummila, G. Mamniashvili, R. E. Packard, and G. E. Volovik,Phys. Rev. Lett. 53, 584 (1984).

    Article  ADS  Google Scholar 

  10. P. W. Anderson,Quantum Fluids, D. F. Brewer (Ed.), North-Holland, Amsterdam (1966) p. 146.

    Google Scholar 

  11. D. Vollhardt and P. Wölfle,The Superfluid Phases of Helium 3, Taylor and Francis, London (1990) Chapter 9.

    Google Scholar 

  12. N. D. Mermin and T-L. Ho,Phys. Rev. Lett.,36, 594 (1976).

    Article  ADS  Google Scholar 

  13. T. D. C. Bevan, A. J. Manninen, J. B. Cook, A. J. Armstrong, J. R. Hook, and H. E. Hall,Phys. Rev. Lett.,74, 750 (correction74, 3092) (1995).

    Article  ADS  Google Scholar 

  14. D. S. Greywall,Phys. Rev. B 33, 7520 (1986).

    Article  ADS  Google Scholar 

  15. E. V. Thuneberg,Europhys. Lett. 3, 711 (1987).

    ADS  Google Scholar 

  16. Y. Kondo, J. S. Korhonen, M. Krusius, V. V. Dmitriev, E. V. Thuneberg, and G. E. Volovik,Phys. Rev. Lett.,68, 3331 (1992).

    Article  ADS  Google Scholar 

  17. J. B. Cook, A. J. Manninen, J. R. Hook, H. Alles, and H. E. Hall,Czech. J. Phys. 46 Suppl. S1, 3 (1996).

    Google Scholar 

  18. E. V. Thuneberg,Phys. Rev. B 36, 3583 (1987).

    Article  ADS  Google Scholar 

  19. M. M. Salomaa and G. E. Volovik,Rev. Mod. Phys. 59, 533 (1987).

    Article  ADS  Google Scholar 

  20. J. Kurkijärvi, private communication.

  21. N. B. Kopnin and M. M. Salomaa,Phys. Rev. B 44, 9667 (1991).

    Article  ADS  Google Scholar 

  22. N. B. Kopnin, G. E. Volovik, and Ü. Parts,Europhys. Lett. 32, 651 (1995).

    Google Scholar 

  23. T. D. C. Bevan, A. J. Manninen, J. B. Cook, J. R. Hook, H. E. Hall, T. Vachaspati, and G. E. Volovik,Nature 386, 689 (1997).

    Article  Google Scholar 

  24. G. E. Volovik,Czech. J. Phys. 46 Suppl. S6, 3048 (1996).

    Google Scholar 

  25. J. R. Hook, A. J. Manninen, J. B. Cook, and H. E. Hall,Czech. J Phys. 46 Suppl. S6, 2930 (1996).

    Google Scholar 

  26. M. Stone,Phys. Rev. B 54, 13222 (1996).

    Article  ADS  Google Scholar 

  27. N. B. Kopnin and A. V. Lopatin,Phys. Rev. B (submitted).

  28. A. J. Manninen, T. D. C. Bevan, J. B. Cook, H. Alles, J. R. Hook, and H. E. Hall,Phys. Rev. Lett.,77, 5086 (1996).

    Article  ADS  Google Scholar 

  29. J. R. Hook, A. D. Eastop, E. Faraj, S. G. Gould, and H. E. Hall,Phys. Rev. Lett. 57, 1749 (1986).

    Article  ADS  Google Scholar 

  30. Ü. Parts, J. M. Karimäki, J. H. Koivuniemi, M. Krusius, V. M. H. Ruutu, E. V. Thuneberg, and G. E. Volovik,Phys. Rev. Lett.,75, 3320 (1995).

    Article  ADS  Google Scholar 

  31. N. D. Mermin,Physica B+C 90, 1 (1977).

    Article  Google Scholar 

  32. V. R. Chechetkin,Zh. Eksp. Theor. Fiz. 71, 1463 (1976) [Soc. Phys. JETP 44, 766 (1976)]: P. W. Anderson and G. Toulouse,Phys. Rer. Lett. 38, 508 (1977).

    Google Scholar 

  33. M. C. Cross and P. W. Anderson,Proc. LT14 1, 29 (1975).

    Google Scholar 

  34. E. B. Sonin,Rev. Mod. Phys. 59, 87 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  35. W. F. Brinkman and M. C. Cross,Progress in Low Temperature Physics Vlla D. F. Brewer (Ed.), North-Holland, Amsterdam (1978), p. 105 and references therein.

    Google Scholar 

  36. H. E. Hall,Phys. Rev. Lett.,54, 205 (1985), and references therein: see also comments inPhys. Rev. Lett. 55, 441, 442 (1985).

    Article  ADS  Google Scholar 

  37. J. C. Wheatley,Progress in Low Temperature Physics Vlla D. F. Brewer (ed.) North-Holland Amsterdam (1978), p. 1.

    Google Scholar 

  38. R. Combescot,Physics Letters 78A, 85 (1980).

    ADS  Google Scholar 

  39. Ü. Parts, E. V. Thuneberg, G. E. Volovik, J. H. Koivuniemi, V. M. H. Ruutu, M. Heinilä, J. M. Karimäki, and M. Krusius,Phys. Rev. Lett.,72, 3839 (1994).

    Article  ADS  Google Scholar 

  40. M. A. Clayton,Ph. D. Thesis, University of Manchester (1989).

  41. T-L. Ho,Ph. D. Thesis, Cornell University (1978).

  42. C. F. Barenghi, R. J. Donnelly, and W. F. Vinen,J. Low Temp. Phys. 52, 189 (1983).

    Article  Google Scholar 

  43. D. S. Greywall,Phys. Rev. B 29, 4933 (1984).

    Article  ADS  Google Scholar 

  44. N. V. Wellard,Ph. D. Thesis, University of Manchester (1982).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bevan, T.D.C., Manninen, A.J., Cook, J.B. et al. Vortex mutual friction in superfluid3He. J Low Temp Phys 109, 423–459 (1997). https://doi.org/10.1007/BF02396905

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02396905

Keywords

Navigation