Skip to main content
Log in

Impurity Transport in a Simulated Gas Target Divertor

  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

Future generation fusion reactors and tokamaks will require dissipative divertors to handle the high particle and heat loads leaving the core plasma (100–400 MW/m2 in ITER). A radiative divertor is proposed as a possible scenario, utilizing a hydrogen target gas to disperse the plasma momentum and trace impurity radiation to dissipate the plasma heat flux. Introducing an impurity into the target hydrogen gas enhances the radiative power loss but may lead to a significant impurity backflow to the main plasma. Thus, impurity flow control represents a crucial design concern. Such impurity flows are studied experimentally in this thesis. The PISCES-A linear plasma device (n ≤ 3 × 1019 m−3, kT e ≤ 20 eV) has been used to simulate a gas target divertor. To study the transport of impurities, a trace amount of impurity gas (i.e., neon and argon) is puffed near the target plate along with the hydrogen gas. Varying the hydrogen gas puffing rate permits us to study the effects of various background plasma conditions on the transport of impurities. A 1-1/2-D fluid code has been developed to solve the continuity and momentum equations for a neutral and singly ionized impurity in a hydrogen background plasma. The results indicate an axial reduction in the impurity concentration upstream from the impurity puffing source. Impurity entrainment is more effective for higher hydrogen target pressures (and for higher hydrogen plasma densities). However, if there is a reversal of the background plasma flow, impurity particles can propagate past the plasma flow reversal point and are then no longer entrained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  • W. L. Barr and B. G. Logan, Fusion Technol. 18, 251 (1990).

    Google Scholar 

  • G. Bekefi, Radiation Processes in Plasmas (Wiley, New York, 1966).

    Google Scholar 

  • S. I. Braginskii, in Reviews of Plasma Physics, edited by M. A. Leontovich (Consultants Bureau, New York, 1965), Vol. 1.

    Google Scholar 

  • F. F. Chen, Introduction to Plasma Physics (Plenum Press, New York, 1974).

    Google Scholar 

  • D. M. Goebel, G. Campbell, and R. W. Conn, “Plasma Surface Interaction Experimental Facility (PISCES) for Materials and Edge Physics Studies,” in Proceedings of the Symposium on Energy Removal and Particle Control in Fusion Devices, Princeton, NJ, U.S.A. 26–29 July 1983, J. Nucl. Mat. 121, 277-82 (1984).

    Google Scholar 

  • Y. Hirooka et al., Progress Report for 1992–1993 on Plasma-Materials Interactions and Edge-Plasma Physics Research (UCLA PPG #1485, Los Angeles, Dec. 1993).

  • Hershkowitz, in Plasma Diagnostics, edited by O. Auciello and D. L. Flamm (Academic Press, Boston, 1989).

    Google Scholar 

  • W. L. Hsu, M. Yamada, and P. J. Barret, Phys. Rev. Lett. 49, 1001 (1982).

    Google Scholar 

  • J. D. Huba, NRL Plasma Formulary, 1994.

  • Yu. L. Igitkhanov, Contrib. Plasma Phys. 28, 447 (1988).

    Google Scholar 

  • G. Janeschitz, K. Borass, G. Federici, Y. Igikhanov, A. Kukushkin, H. D. Pacher, G. W. Pacher, and M. Sugihara, “The ITER Divertor Concept”, in Proceedings of the 11th International Conference on Plasma-Surface Interactions in Controlled Fusion Devices, Mito Japan, May 1994, J. Nucl. Mat. 220-222, 73-88 (1995).

    Google Scholar 

  • R. V. Jensen, D. E. Post, W. H. Grasberger, C. B. Tarter, and W. A. Lokke, Nucl. Fusion 17, 1187 (1977).

    Google Scholar 

  • E. W. McDaniel et al., Ion-Molecule Reactions (Wiley-Interscience, New York, 1970).

    Google Scholar 

  • R. W. P. McWhirter, in Plasma Diagnostic Techniques, edited by R. H. Huddlestone and S. L. Leonard (Academy Press, New York, 1965).

    Google Scholar 

  • M. Petravic, Phys. Plasmas 1, 2077 (1994).

    Google Scholar 

  • L. Schmitz, L. Blush, G. Chevilier, R. Lehmer, Y. Hirooka, P. Chia, G. Tynan, and R. W. Conn, “Impurity Transport and Retention in a Gas Target Divertor: Simulation Experiments in PISCES-A and Modeling Results,” J. Nucl. Mat. 196-198, 841 (1992).

    Google Scholar 

  • L. Schmitz, B. Merriman, L. Blush, R. Lehmer, R.W. Conn, R. Doerner, A. Grossman, F. Najmabadi, “Plasma and Neutral Dynamics in a Simulated Tokamak Gas Target Divertor,” Phys. Plasmas 2 (8), 3081-3094 (1995).

    Google Scholar 

  • L. Schmitz, B. Merriman, A. Grossman, F. Najmabadi, and R.W. Conn, Bull. Am. Phys. Soc. 39, 1712 (1994).

    Google Scholar 

  • L. Schmitz, B. Merriman, and B. Lee, “Momentum Removal, Radiative Cooling, and Plasma Detachment in Dissipative Divertors,” Bull. Am. Phys. Soc. 40 (11), 1729 (1995).

    Google Scholar 

  • L. Schmitz et al., “Heat Flux Retention and Impurity Screening in a Gas Target Divertor,” in Plasma-Materials Interactions and Edge-Plasma Physics Research (Pisces Progress Report, Los Angeles, 1991–1992).

    Google Scholar 

  • W. M. Stacey, Jr., Fusion Plasma Analysis (John Wiley & Sons, New York, 1981).

    Google Scholar 

  • See National Technical Information Service Document No. MATT-1050 (F. H. Tenney and G. Lewin, in Princeton Plasma Physics Laboratory Report No. MATT-1050, 1974, p. 75). Copies may be ordered from the National Technical Information Service, Springfield, VA 22161.

  • M. L. Watkins and P.-H. Rebut, in Proceedings of the 19th European Conference on Controlled Fusion and Plasma Physics, Innsbruck, Austria, 1992 (European Physical Society, Geneva, 1992), Vol. 16C, Part II, p. 731.

    Google Scholar 

  • A. Y. Wong, Introduction to Experimental Plasma Physics, (Physics Department, UCLA, 1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blush, L.M., Schmitz, L., Merriman, B. et al. Impurity Transport in a Simulated Gas Target Divertor. Journal of Fusion Energy 19, 115–142 (2000). https://doi.org/10.1023/A:1013918212432

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013918212432

Navigation