Skip to main content
Log in

Reversed-field pinch studies in the Madison Symmetric Torus

  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

Studies of large-size (R=1.5 m,a=0.5 m), moderate current (I <750 kA) reversed-field pinch (RFP) plasmas are carried out in the Madison Symmetric Torus in order to evaluate and improve RFP confinement, study general toroidal plasma MHD issues, determine the mechanism of the RFP dynamo, and measure fluctuation-induced transport and anomalous ion heating. MST confinement scaling falls short of the RFP scaling trends observed in smaller RFPs, although the plasma resistance is classical. MHD tearing modes with poloidal mode numberm=1 and toroidal mode numbersn=5–7 are prevalent and nonlinearly couple to produce sudden relaxations akin to tokamak sawteeth. Edge fluctuation-induced transport has been measured with a variety of insertable probes. Ions exhibit anomalous heating, with increases of ion temperature occurring during strong MHD relaxation. The anomalous heating fraction decreases with increasing density, such that ion temperatures approach the lower limit given by electron-ion friction. The RFP dynamo has been studied with attention to various possible mechanisms, including motion-EMF drive, the Hall effect, and superthermal electrons. The toroidal field capacity of MST will be upgraded during Summer 1993 to allow low-current tokamak operation as well as improved RFP operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. B. Taylor (1986).Rev. Mod. Phys. 58, 741.

    Google Scholar 

  2. J. W. Johnson (1981).Plasma Phys. 23, 187.

    Google Scholar 

  3. K. F. Schoenberg, R. F. Gribble, and J. A. Phillips (1982).Nucl. Fusion 22, 1433.

    Google Scholar 

  4. J. C. Sprott (1988).Phys. Fluids 31, 2266.

    Google Scholar 

  5. W. Shen and J. C. Sprott (1991).Phys. Fluids B 3, 1225.

    Google Scholar 

  6. C. G. Gimblett (1990).Europhys. Lett. 11, 541.

    Google Scholar 

  7. Z. Yoshida (1991).Nucl. Fusion 31, 386.

    Google Scholar 

  8. N. Mattor, S. C. Prager, and P. Terry (1993).Comments Plasma Phys. Contr. Fusion 15, 65.

    Google Scholar 

  9. E. Scime, S. Hokin, N. Mattor, and C. Watts (1992).Phys. Rev. Lett. 68, 2165.

    Google Scholar 

  10. E. Scime, M. Cekic, D. J. Den Hartog, S. Hokin, D. Holly, and C. Watts (1992).Phys. Fluids B 4, 4062.

    Google Scholar 

  11. F. Najmabadiet al. (1990). UCLA Report UCLA-PPG-1200, UCLA.

  12. K. A. Werley (1991).Nucl. Fusion 31, 567.

    Google Scholar 

  13. R. N. Dexter, D. Kerst, T. W. Lovell, S. C. Prager, and J. C. Sprott (1991).Fus. Technol. 19, 131.

    Google Scholar 

  14. G. Malesani (1987). inProceedings of the International School of Plasma Physics Workshop on Physics of Mirrors, Reversed Field Pinches and Compact Tori, Varenna, Italy, 1986. S. Ortolani and E. Sindoni (eds.) (Societá Italiana di Fisica, Bologna) p. 359.

    Google Scholar 

  15. Y. Yagi, Y. Maejima, Y. Hirano, T. Shimada, K. Hattori, I. Hirota, and P. R. Brunsell (1992).Plasma Physics and Controlled Nuclear Fusion Research, 1992. International Atomic Energy Agency, Vienna. To be published.

    Google Scholar 

  16. Earl Scime and Samuel Hokin (1992).Rev. Sci. Instrum. 63, 4527.

    Google Scholar 

  17. S. Hokin, A. Almagri, S. Assadi, M. Cekic, B. Chapman, G. Chartas, N. Crocker, M. Cudzinovic, D. J. Den Hartog, R. Dexter, G. Fiksel, J. Henry, D. Holly, S. Prager, T. Rempel, J. Sarff, E. Scime, W. Shen, C. Sprott, M. Stoneking, and C. Watts (1992).Plasma Physics and Controlled Nuclear Fusion Research, 1992. International Atomic Energy Agency, Vienna. To be published.

    Google Scholar 

  18. K. F. Schoenberg, R. W. Moses, and R. L. Hagenson (1984). Phys. Fluids 27, 1671.

    Google Scholar 

  19. T. R. Jarboe and B. Alper (1987).Phys. Fluids 30, 1177.

    Google Scholar 

  20. H. Y. W. Tsui (1988).Nucl. Fusion 28, 1543.

    Google Scholar 

  21. A. F. Almagri, S. Assadi, S. C. Prager, J. S. Sarff, and D. W. Kerst (1992).Phys. Fluids B 4, 4080.

    Google Scholar 

  22. D. J. Den Hartog, M. Cekic, G. Fiksel, S. Hokin, R. Kendrick, S. Prager, and M. Stoneking (1993).J. Nucl. Mater. 200, 177.

    Google Scholar 

  23. S. Assadi, S. C. Prager, and K. L. Sidikman (1992).Phys. Rev. Lett. 69, 281.

    Google Scholar 

  24. J. Sarff, S. Assadi, A. Almagri, M. Cekic, D. J. Den Hartog, G. Fiksel, S. Hokin, H. Ji, S. Prager, W. Shen, K. Sidikman, and M. Stoneking (1993).Phys. Fluids B 5, 2540.

    Google Scholar 

  25. R. J. Hayden and B. Alper (1989).Plasma Phys. Controlled Fusion 31, 193.

    Google Scholar 

  26. T. Tamano, W. D. Bard, C. Chu, Y. Kondoh, R. J. LaHaye, P. S. Lee, M. T. Saito, M. J. Schaffer, and P. L. Taylor (1987). Phys. Rev. Lett. 59, 1444.

    Google Scholar 

  27. George Chartas and Samuel Hokin (1992).Phys. Fluids B 4, 4019.

    Google Scholar 

  28. W. Shen, R. N. Dexter, and S. C. Prager (1992).Phys. Rev. Lett 68, 1319.

    Google Scholar 

  29. T. D. Rempel, C. W. Spragins, S. C. Prager, S. Assadi, D. J. Den Hartog, and S. A. Hokin (1991).Phys. Rev. Lett. 67, 1438.

    Google Scholar 

  30. T. D. Rempel, A. F. Almagri, S. Assadi, D. J. Den Hartog, S. A. Hokin, S. C. Prager, J. S. Sarff, W. Shen, K. L. Sidikman, C. W. Spragins, J. C. Sprott, M. R. Stoneking, and E. J. Zita (1992).Phys. Fluids B 4, 2136.

    Google Scholar 

  31. G. Fiksel, J. Frank, and D. Holly (1993).Rev. Sci. Instrum. Submitted.

  32. P. G. Carolan, A. R. Field, A. Lazaros, M. G. Rusbridge, H. Y. W. Tsui, and M. V. Bevir (1987).Proceedings of the 14th European Conf. on Contr. Fusion and Plasma Physics, Madrid, EPS, Petit-Lancy, Vol. 2, p. 469.

    Google Scholar 

  33. G. A. Wurdenet al. (1988).Proceedings of the 15th European Conf. on Contr. Fusion and Plasma Physics, Dubrovnik, EPS, Petit-Lancy, p. 331.

    Google Scholar 

  34. H. Ji, H. Toyama, A. Fujisawa, S. Shinohara, and K. Miyamoto (1992).Phys. Rev. Lett. 69, 616.

    Google Scholar 

  35. A. al-Karkhy, P. K. Browning, G. Cunningham, S. J. Gee, and M. G. Rusbridge (1993).Phys. Rev. Lett. 70, 1814.

    Google Scholar 

  36. W. Shen and S. C. Prager (1993).Phys. Fluids B 5, 1931.

    Google Scholar 

  37. A. R. Jacobson and R. W. Moses, Jr. (1984).Phys. Rev. A 29, 3335.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hokin, S., Almagri, A., Cekic, M. et al. Reversed-field pinch studies in the Madison Symmetric Torus. J Fusion Energ 12, 281–287 (1993). https://doi.org/10.1007/BF01079671

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01079671

Key words

Navigation