Skip to main content
Log in

Chemical basis for host selection byHemileuca oliviae

Role of tannins in preference of C4 grasses

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

When provided a choice between grass species with C3 or C4 photosynthetic pathways, larvae of range caterpillar,Hemileuca oliviae Cockerell, selected C4 grasses. The basis for host selection was examined by conducting analyses of moisture, crude protein, total available carbohydrate, sucrose, glucose, astringency, condensed tannin, silica, and pubescence of 14 grass species, and correlating host plant chemical characteristics with host preference. Most of the variation in host preference was explained by tannin characteristics (astringency and condensed tannin); C3 grass species had significantly higher tannin levels than C4 species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bate-Smith, E.C. 1973a. Haemanalysis of tannins: The concept of relative astringency.Phytochemistry 12:907–912.

    Google Scholar 

  • Bate-Smith, E.C. 1973b. Tannins in herbaceous Leguminosae.Phytochemistry 12:1809–1812.

    Google Scholar 

  • Bernays, E.A. 1981. Plant tannins and insect herbivores: An appraisal.Ecol. Entomol. 6:353–360.

    Google Scholar 

  • Bernays, E.A., andChapman, R.F. 1970. Food selection byChorthippus parallelus (Zetterstedt) (Orthoptera: Acrididae) in the field.J. Anim. Ecol. 39:383–394.

    Google Scholar 

  • Bernays, E.A., andChapman, R.F. 1978. Plant chemistry and acridoid feeding behavior, pp. 99–141,in J.B. Harborne (ed.). Biochemical Aspects of Plant and Animal Coevolution. Academic Press, London.

    Google Scholar 

  • Bernays, E.A., Chamberlain, D., andMcCarthy, P. 1980. The differential effects of ingested tannic acid on different species of Acridoidea.Entomol. Exp. Appl. 28:158–166.

    Google Scholar 

  • Bernays, E.A., Chamberlain, D.J., andLeather, E.M. 1981. Tolerance of acridids to ingested condensed tannin.J. Chem. Ecol. 7:247–256.

    Google Scholar 

  • Boutton, T.W., Smith, B.N., andHarrison, A.T. 1980. Carbon isotope ratios and crop analyses ofArphia (Orthoptera: Acrididae) species in southeastern Wyoming grassland.Oecologia 45:299–306.

    Google Scholar 

  • Bristow, P.R., Doss, R.P., andCampbell, R.L. 1979. A membrane filter bioassay for studying phagostimulatory materials in leaf extracts.Ann. Entomol. Soc. Am. 72:16–18.

    Google Scholar 

  • Capinera, J.L. 1978. Studies of host plant preference and suitability exhibited by early-instar range caterpillar larvae.Environ. Entomol. 7:738–740.

    Google Scholar 

  • Caswell, H., andReed, F.C. 1975. Indigestibility of C4 bundle sheath cells by the grasshopperMelanoplus confusus.Ann. Entomol. Soc. Am. 68:686–688.

    Google Scholar 

  • Caswell, H., andReed, F.C. 1976. Plant-herbivore interactions: The indigestibility of C4 bundle sheaths by grasshoppers.Oecologia 26:151–156.

    Google Scholar 

  • Caswell, H., Reed, F., Stephenson, S.N., andWerner, P.A. 1973. Photosynthetic pathways and selective herbivory: A hypothesis.Am. Nat. 107:465–480.

    Google Scholar 

  • Cates, R.G. 1980. Feeding patterns of monophagus, oligophagus, and polyphagous insect herbivores: The effect of resource abundance and plant chemistry.Oecologia 46:22–31.

    Google Scholar 

  • Cates, R.G., andRhoades, D.F. 1977. Patterns in the production of antiherbivore chemical defenses in plant communities.Biochem. Syst. Ecol. 5:185–193.

    Google Scholar 

  • Downton, W.J.S. 1975. The occurrence of C4 photosynthesis among plants.Photosynthetica 9:96–105.

    Google Scholar 

  • Feeny, P.P. 1976. Plant apparency and chemical defense, pp. 1–40,in J.W. Wallace and R.L. Mansell (eds.). Biochemical Interaction between Plants and Insects. Plenum Press, New York.

    Google Scholar 

  • Feeny, P.P., andBostock, H. 1968. Seasonal changes in the tannin content of oak leaves.Phytochemistry 7:871–880.

    Google Scholar 

  • Hagerman, A.E., andButler, L.G. 1978. Protein precipitation method for the quantitative determination of tannins.J. Agric. Food. Chem. 26:809–812.

    Google Scholar 

  • Harborne, J.B. (ed.). 1978. Biochemical Aspects of Plant and Animal Coevolution. Academic Press, London. 435 pp.

    Google Scholar 

  • Heinze, P.H., andMurneek, A.E. 1940. Comparative accuracy and efficiency in determination of carbohydrates in plant material.Univ. Mo. Exp. Stn. Bull. 314:1–23.

    Google Scholar 

  • Hitchcock, A.S. 1935. Manual of the Grasses of the United States. USDA Misc. Pub. 200. 1051 pp.

  • Jermy, T., Hanson, E.E., andDethier, V.G. 1968. Induction of specific food preference in lepidopterous larvae.Entomol. Exp. Appl. 11:211–230.

    Google Scholar 

  • Kremzer, E.G., Moss, D.N., andCrookston, R.K. 1975. Carbon dioxide compensation points of flowering plants.Plant Physiol. 56:194–206.

    Google Scholar 

  • Lechtenberg, V.L., Hold, D.A., andYoungberg, H.W. 1971. Diurnal variation in nonstructural carbohydrates, in vitro digestibility, and leaf to stem ratio of alfalfa.Agron. J. 63:719–724.

    Google Scholar 

  • Mattson, W.J. 1980. Herbivory in relation to plant nitrogen content.Annu. Rev. Ecol. Syst. 11:119–161.

    Google Scholar 

  • McKenzie, H.A., andWallace, H.S. 1954. The Kjeldahl determination of nitrogen: A critical study of digestion conditions—temperature, catalyst, and oxidizing agent.Aust. J. Chem. 7:55–70.

    Google Scholar 

  • Ojima, K., andIsawa, T. 1968. The variation of carbohydrates in various species of grasses and legumes.Can. J. Bot. 46:1507–1511.

    Google Scholar 

  • Piper, C.S. 1944. Soil and Plant Analysis. Interscience Publishers Inc., New York. 368 pp.

    Google Scholar 

  • Rhoades, D.F., andCates, R.G. 1976. A general theory of plant antiherbivore chemistry, pp. 168–212,in J.W. Wallace and R.L. Mansell (eds.). Biochemical Interaction between Plants and Insects. Plenum Press, New York.

    Google Scholar 

  • Rice, E.L., andPancholy, S.K. 1973. Inhibition of nitrification by climax ecosystems. II. Additional evidence and possible role of tannins.Am. J. Bot. 60:691–702.

    Google Scholar 

  • Rosenthal, G.A., andJanzen, D.H. (eds.). 1979. Herbivores: Their Interaction with Secondary Plant Metabolites. Academic Press, New York. 718 pp.

    Google Scholar 

  • Scriber, J.M., andSlansky, F. 1981. The nutritional ecology of immature insects.Annu. Rev. Entomol. 26:183–211.

    Google Scholar 

  • Singh, P. 1977. Artifical Diets for Insects, Mites, and Spiders. IFI, Plenum, New York. 594pp.

    Google Scholar 

  • Smith, D. 1968. Classification of several native North American grasses as starch or fructosan accumulators in relation to taxonomy.J. Br. Grassl. Soc. 23:306–309.

    Google Scholar 

  • Smith, D., Paulsen, G.N., andRaguse, C.A. 1964. Extraction of total available carbohydrates from grass and legume tissue.Plant Physiol. 39:960–962.

    Google Scholar 

  • Swain, T. 1979. Tannins and lignins, pp. 657–682,in G.A. Rosenthal and D.H. Janzen (eds.). Herbivores: Their Interactions with Secondary Plant Metabolites. Academic Press, New York.

    Google Scholar 

  • Ting, S.V. 1956. Rapid colorimetric methods for simultaneous determinations to total reducing sugars and fructose in citrus juices.J. Agric. Food Chem. 4:263–266.

    Google Scholar 

  • Tempel, A.S. 1981. Field studies of the relationship between herbivore damage and tannin concentration in bracken (Pteridium aquilinum Kuhn).Oecologia 51:97–106.

    Google Scholar 

  • Wallace, J.W., andMansell, R.L. (eds.). 1976. Biochemical Interaction between Plants and Insects. Plenum Press, New York. 425 pp.

    Google Scholar 

  • van Emden, H.F., andWay, M.J. 1973. Host plants in the population dynamics of insects, pp. 181–199,in H.F. van Emden (ed.). Insect/Plant Relationships. Blackwell, London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Capinera, J.L., Renaud, A.R. & Roehrig, N.E. Chemical basis for host selection byHemileuca oliviae . J Chem Ecol 9, 1425–1437 (1983). https://doi.org/10.1007/BF00990748

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00990748

Key words

Navigation