Skip to main content
Log in

Survival and Development of Tobacco Hornworm Larvae on Tobacco Plants Grown Under Elevated Levels of Ozone

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Tobacco plants, Nicotiana tabacum were grown under different levels of ozone (O3) in open-top chambers. Ozone concentrations were established by charcoal filtration, which reduced O3 to approximately one-half ambient, or by the addition of O3 to unfiltered air to increase concentrations to approximately 1.4 or 1.7 times ambient O3. Survival of tobacco hornworm, Manduca sexta, larvae was increased when second instars were fed tobacco leaves grown in chambers with elevated levels of O3. Second instars also gained significantly more weight when they were fed for one week on plants exposed to elevated levels of O3 than when they were fed plants grown in charcoal-filtered air. Ozone-treated tobacco plants had higher levels of total nitrogen (primarily reduced nitrogen) and soluble carbohydrates (sugars), and lower levels of leaf-surface components, starch, nicotine, and rutin. Increased survival and growth response of hornworm larvae to elevated O3 levels in these experiments suggests that similar responses could occur in the southeastern US tobacco production areas where O3 levels can be high enough to injure tobacco plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Adepipe, N. O., Fletcher, R. A., and Ormond, D. P. 1973. Ozone lesions in relation to senescence of attached and detached leaves of tobacco. Atmos. Environ. 7:357–361.

    Google Scholar 

  • Alstad, D. N., Edmunds, G. F., and Weinstein, L. H. 1982. Effects of air pollutants on insect populations. Annu. Rev. Entomol. 27:369–384.

    Google Scholar 

  • Aycock, M. K., Jr. 1975. Phenotypic correlations of weather fleck with certain agronomic and chemical traits in Maryland tobacco. Tobacco Sci. 19:96–97.

    Google Scholar 

  • Barnes, J. D., Percy, K. E., Paul, N. D., Jones, P., McLaughlin, C. K., Mullineaux, P. M., Creissen, G., and Wellburn, A. R. 1996. The influence of UV-B radiation on the physiochemical nature of tobacco (Nicotiana tabacum L.) leaf surface. J. Exp. Bot. 47:99–109.

    Google Scholar 

  • Baumhover, A. H. 1985. Manduca sexta, pp. 387–400, in P. Singh and R. F. Moore (eds.). Handbook of Insect Rearing, Volume 2. Elsevier Science Publisher, Amsterdam.

    Google Scholar 

  • Beard, R. 1965. Observations on house flies in high-ozone environments. Ann. Entomol. Soc. Am. 58:404–405.

    PubMed  Google Scholar 

  • Berenbaum, M. 1978. Toxicity of a furanocoumarin to armyworms: A case of biosynthetic escape from insect herbivores. Science 201:532–534.

    Google Scholar 

  • Berenbaum, M. 1988. Effects of electromagnetic radiation on insect-plant interactions, pp. 167–185, in E. A. Heinrichs (ed.). Plant Stress-Insect Interactions. Wiley Interscience, New York.

    Google Scholar 

  • Bolsinger, M., Lier, M. E., and Hughes, P. R. 1992. Influence of ozone air pollution on plantherbivore interactions. Part 2. Effects of ozone on feeding preference, growth and consumption rates of monarch butterflies (Danaus plexippus). Environ. Pollut. 77:31–37.

    PubMed  Google Scholar 

  • Booker, F. L., Fiscus, E. L., Philbeck, R. B., Heagle, A. S., Miller, J. E., and Heck, W. W. 1992. A supplemental ultraviolet-B radiation system for open-top field chambers. J. Environ. Qual. 21:56–61.

    Google Scholar 

  • Chappelka, A. H., Kraemer, M. E., Mebrahtu, T., Rangappa, M., and Benepal, P. S. 1988. Effects of ozone on soybean resistance to the Mexican bean beetle (Epilachna varivestis Mulsant). Environ. Exp. Bot. 28:53–60.

    Google Scholar 

  • Endress, A. G., and Post, S. C. 1985. Altered feeding preferences for Mexican bean beetle Epilachna varivestis for ozonated soybean foliage. Environ. Pollut. Ser. A. 39:9–16.

    Google Scholar 

  • Heagle, A. S. 1989. Ozone and crop yield. Annu. Rev. Phytopathol. 27:397–423.

    Google Scholar 

  • Heagle, A. S., Body, D. E., and Heck, W. W. 1973. An open-top field chamber to assess the impact of air pollution on plants. J. Environ. Qual. 2:365–368.

    Google Scholar 

  • Heagle, A. S., Philbeck, R. B., Rogers, H. H., and Letchworth, M. B. 1979. Dispensing and monitoring ozone in open-top field chambers for plant-effects studies. Phytopathology 69:15–20.

    Google Scholar 

  • Heagle, A. S., Heck, W. W., Lesser, V. M., and Rawlings, J. O. 1987. Effects of daily ozone exposure duration and concentration fluctuation on yield of tobacco. Phytopathology 77:856–862.

    Google Scholar 

  • Heagle, A. S., Kress, L. W., Temple, P. J., Kohut, R. J., Miller, J. E., and Heggestad, H. E. 1989. Factors influencing ozone dose-yield response relationships in open-top field chamber studies, pp. 141–179, in W. W. Heck (ed.). Assessment of Crop Loss from Air Pollutants. Elsevier Applied Science, London.

    Google Scholar 

  • Heagle, A. S., Brandenburg, R. L., Burns, J. C., and Miller, J. E. 1994. Ozone and carbon dioxide effects on spider mites in white clover and peanut. J. Environ. Qual. 23:1168–1176.

    Google Scholar 

  • Heck, W. W., Heagle, A. S., and Shriner, D. S. 1986. Effects on vegetation: Native, crops, forests, pp. 248–333, in A. C. Stern (ed.). Air Pollution, Vol. VI. Supplement to Air Pollutants, Their Transformation, Transport and Effects, 3rd ed. Academic Press, New York.

    Google Scholar 

  • Heck, W. W., Taylor, O. C., and Tingey, D. T. 1988. Assessment of Crop Loss from Air Pollutants. Elsevier Applied Science, London.

    Google Scholar 

  • Heggestad, H. E. 1966. Ozone as a tobacco toxicant. J. Air Pollut. Control Assoc. 16:691–694.

    Google Scholar 

  • Heggestad, H. E., and Middleton, J. T. 1959. Ozone in high concentrations as cause of tobacco leaf injury. Science 129:208–210.

    Google Scholar 

  • HeliÖvaara, K., and VÄisÄnen, R. 1993. Insects and Pollution. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Hsieh, S. T., and Kwan, K. H. 1972. Effects of air pollution on metabolism of the sugar phosphates and carbohydrates of tobacco, pp. 130–138, in Tobacco Research Institute Annual Report. Taiwan, Tobacco and Wine Monopoly Bureau (in Chinese with English summary).

  • Hughes, P. R. 1988. Insect populations on host plants subjected to air pollution, pp. 249–319, in E. A. Heinrichs (ed.). Plant Stress-Insect Interactions. Wiley Interscience, New York.

    Google Scholar 

  • Jackson, D. M., and Danehower, D. A. 1996. Integrated case study: Nicotiana leaf surface components and their effects on insect pests and disease, pp. 231–254, in G. Kerstiens (ed.). Plant Cuticles: An Integrated Functional Approach. BIOS Scientific Publishers, Oxford, UK.

    Google Scholar 

  • Jackson, D. M., and Severson, R. F. 1989. Evaluating tobacco for resistance to insect pests, pp. 101–124, in IBPGR Training Courses: Lecture Series. 2. Scientific Management of Germplasm: Characterization, Evaluation and Enhancement. IBPGR, Rome.

    Google Scholar 

  • Jackson, D. M., Severson, R. F., Johnson, A. W., and Herzog, G. A. 1986. Effects of cuticular duvane diterpenes from green tobacco leaves on tobacco budworm (Lepidoptera: Noctuidae) oviposition. J. Chem. Ecol. 12:1349–1359.

    Google Scholar 

  • Jackson, D. M., Severson, R. F., and Johnson, A. W. 1989. Effects of natural tobacco constituents on insect survival, development, and behavior. Recent Adv. Tobacco Sci. 15:26–116.

    Google Scholar 

  • Jackson, D. M., Herzog, G. A., Johnson, A. W., Severson, R. F., and Stephenson, M. G. 1991. Resistance of TI 1112 and I-35 tobacco to hornworm infestations (Lepidoptera: Sphingidae). Tobacco Sci. 35:35–39.

    Google Scholar 

  • Jeffords, M. R., and Endress, A. G. 1984. Possible role of ozone in tree defoliation by the gypsy moth (Lepidoptera: Lymantriidae). Environ. Entomol. 13:1249–1252.

    Google Scholar 

  • Johnson, A. W., and Severson, R. F. 1982. Physical and chemical leaf surface characteristics of aphid resistant and susceptible tobacco. Tobacco Sci. 26:98–102.

    Google Scholar 

  • Jones, C. G., Coleman, J. S., and Findlay, S. 1994. Effects of ozone on interactions between plants, consumers and decomposers, pp. 339–363, in R. G. Alscher and A. R. Wellburn (eds.). Plant Responses to the Gaseous Environment. Chapman and Hall, London.

    Google Scholar 

  • Jones, M. G. K., Outlaw, W. H., and Lowry, O. H. 1977. Enzymic assay of 10-7 to 10-14 moles of sucrose in plant tissue. Plant Physiol. 60:379–383.

    Google Scholar 

  • Kitamura, T., and Kuroda, S. 1973. Studies on weather fleck on tobacco. VIII. Relation between chemical constituents in leaves and fleck-injury (Type II and III). Bull. Okayama Tobacco Exp. Stn. 33 (special issue no. 2):63–70 (in Japanese with English summary).

    Google Scholar 

  • Langebartels, C., Kerner, K., Leonardi, S., Schraudner, M., Trost, M., Heller, W., and Sandermann, H., Jr. 1991. Biochemical plant responses to ozone. I. Differential induction of polyamine and ethylene biosynthesis in tobacco. Plant Physiol. 95:882–889.

    Google Scholar 

  • Levy, R., Chiu, Y. J., and Cromroy, H. L. 1972. Effects of ozone on three species of Diptera. Environ. Entomol. 1:608–611.

    Google Scholar 

  • Lowe, R. H., and Hamilton, J. L. 1967. Rapid method for determination of nitrate in plant and soil extracts. J. Agric. Food Chem. 14:359–361.

    Google Scholar 

  • Menser, H. A., and Chaplin, J. F. 1969. Air pollution: Effects on the phenol and alkaloid content of cured tobacco leaves. Tobacco Sci. 13:169–170.

    Google Scholar 

  • Menser, H. A., and Chaplin, J. F. 1975. Effects of ozone air pollution on nitrogen constituents, pH, and water soluble ash of air-cured tobacco leaves. Tobacco Sci. 19:108–110.

    Google Scholar 

  • Menser, H. A., Chaplin, J. F., Cheng, A. L. S., and Sorokin, T. 1977. Polyphenols, phytosterols, and reducing sugars in air-cured tobacco leaves injured by ozone air pollution. Tobacco Sci. 21:35–38.

    Google Scholar 

  • Reich, P. B. 1987. Quantifying plant response to ozone: A unifying theory. Tree Physiol. 3:63–91.

    PubMed  Google Scholar 

  • Riemer, J., and Whittaker, J. B. 1989. Air pollution and insect herbivores: Observed interactions and possible mechanisms, pp. 73–105, in E. A. Bernays (ed.). Insect-Plant Interactions. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • SAS Institute. 1989. SAS /STAT User's Guide, Version 6, 4th ed., Volumes 1 and 2. SAS Institute, Cary, North Carolina.

    Google Scholar 

  • Schraudner, M., Ernst, D., Langebartels, C., and Sandermann, H., Jr. 1992. Biochemical plant responses to ozone. III. Activation of the defense related proteins b-1,3-glucanase and chitinase in tobacco leaves. Plant Physiol. 99:1321–1328.

    Google Scholar 

  • Seibert, M., Wetherbee, P. J., and Job, D. D. 1975. The effects of light intensity and spectral quality on growth and shoot inhibition in tobacco callus. Plant Physiol. 56;130–139.

    Google Scholar 

  • Self, L. S., Guthrie, E. F., and Hodgson, E. 1964. Adaptation of tobacco hornworms to the ingestion of nicotine. J. Insect Physiol. 10:907–914.

    Google Scholar 

  • Severson, R. F., McDuffie, K. L., Arrendale, R. F., Gwynn, G. R., Chaplin, J. F., and Johnson, A. W. 1981. Rapid method for the analysis of tobacco nicotine alkaloids. J. Chromatogr. 211:111–121.

    Google Scholar 

  • Severson, R. F., Arrendale, R. F., Chortyk, O. T., Johnson, A. W., Jackson, D. M., Gwynn, G. R., Chaplin, J. F., and Stephenson, M. G. 1984. Quantitation of the major cuticular components from green leaf of different tobacco types. J. Agric. Food Chem. 32:566–570.

    Google Scholar 

  • Severson, R. F., Arrendale, R. F., Chortyk, O. T., Green, C. R., Thome, F. A., Stewart, J. L., and Johnson, A. W. 1985a. Isolation and characterization of the sucrose esters of the cuticular waxes of green tobacco. J. Agric. Food Chem. 33:870–875.

    Google Scholar 

  • Severson, R. F., Johnson, A. W., and Jackson, D. M. 1985b. Cuticular constituents of tobacco: Factors affecting their production and their role in insect and disease resistance and smoke quality. Recent Adv. Tobacco Sci. 11:105–174.

    Google Scholar 

  • Severson, R. F., Stephenson, M. G., Johnson, A. W., Jackson, D. M., and Chortyk, O. T. 1988. Isolation and preparative chromatography of the major cuticular diterpenes of green tobacco. Tobacco Sci. 32:99–103.

    Google Scholar 

  • Snook, M. E., and Chortyk, O. T. 1982. An improved extraction-HPLC method for tobacco polyphenols. Tobacco Sci. 26:25–29.

    Google Scholar 

  • Snook, M. E., Mason, P. F., and Sisson, V. A. 1986. Polyphenols in the Nicotiana species. Tobacco Sci. 30:43–49.

    Google Scholar 

  • Stamp, N. E., and Skrobola, C. M. 1993. Failure to avoid rutin diets results in altered food utilization and reduced growth rate of Manduca sexta larvae. Entomol. Exp. Appl. 68:127–142.

    Google Scholar 

  • Teramura, A. H. 1983. Effects of ultraviolet-B radiation on the growth and yield of crop plants. Physiol. Plant. 58:415–427.

    Google Scholar 

  • Tevini, M., and Teramura, A. H. 1989. UV-B effects on terrestrial plants. Photochem. Photobiol. 50:479–487.

    Google Scholar 

  • Trevathan, L. E., Moore, L. D., and Orcutt, D. M. 1979. Symptom expression and free sterol and fatty acid composition of flue-cured tobacco plants exposed to ozone air pollution injury. Phytopathology 69:582–585.

    Google Scholar 

  • Trumble, J. T., Hare, J. D., Musselman, R. C., and McCool, P. M. 1987. Ozone-induced changes in host-plant suitability: Interactions of Keiferia lycopersicella and Lycopersicon esculentum. J. Chem. Ecol. 13:203–218.

    Google Scholar 

  • US EPA. 1996. Air Quality Criteria for Ozone and Related Photochemical Oxidants. EPA /600–90/004bF, National Center for Environmental Assessment, Office of Research and Development, Research Triangle Park, North Carolina.

    Google Scholar 

  • Wahlberg, I., and Eklund, A. M. 1992. Cembranoids, pseudopteranoids, and cubitanoids of natural occurrence, pp. 141–294, in A. M. Eklund, S. I. Hatanaka, and I. Wahlberg (eds.). Progress in the Chemistry of Organic Natural Products. Springer-Verlag, Vienna.

    Google Scholar 

  • Yazawa, M., Shimizu, T., and Hirao, T. 1992. Feeding response of the silkworm, Bombyx mori, to UV irradiation of mulberry leaves. J. Chem. Ecol. 18:561–569.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jackson, D.M., Rufty, T.W., Heagle, A.S. et al. Survival and Development of Tobacco Hornworm Larvae on Tobacco Plants Grown Under Elevated Levels of Ozone. J Chem Ecol 26, 1–19 (2000). https://doi.org/10.1023/A:1005440025509

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005440025509

Navigation