Skip to main content
Log in

Evolution and Adaptive Significance of Larval Midgut Alkalinization in the Insect Superorder Mecopterida

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The phylogenetic distribution of reported midgut pH values among larval Mecopterida supports a model in which the common ancestor of this group possessed an alkaline midgut, with subsequent loss of this trait in the lineage leading to the muscomorphan Diptera. The relationship between midgut pH and diet guild rank within the Lepidoptera and Diptera was tested by assigning numerical values to diet guilds (i.e., fruit, grasses, herbs, trees and shrubs, and organic detritus). Lepidopteran superfamilies were found to differ significantly in both midgut pH and in diet guild rank. Regression of mean superfamily midgut pH against mean superfamily diet guild rank yielded an R 2 of 0.79 (N = 10), whereas regression of species midgut pH against species diet guild rank yielded an R 2 of only 0.15 (N = 60). Species feeding on foliage of plant taxa high in tannins and on Solanaceae have midgut pH values above 9, and midgut pH in species feeding on these taxa is positively related to diet guild. In contrast, species feeding on the foliage of plant taxa containing terpenes, DIMBOA, glucosinolates, and pyrrolizidine alkaloids have midgut pH values near 8, and midgut pH of these species is either not related to diet guild (all species) or is negatively related to diet guild rank when the analysis is limited to the Noctuoidea. The data suggest that decreased midgut pH in species feeding on plants containing terpenes, DIMBOA, glucosinolates, and pyrrolizidine alkaloids may be an adaptive response that overrides selection for high pH in the presence of tannins and that midgut pH may be one factor contributing to the limitation of the host plant range of many species of lepidopteran herbivores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Applebaum, S. W. 1985. Biochemistry of digestion, pp. 279-312, in G. A. Kerkut and L. I. Gilbert (eds.). Comprehensive Insect Physiology, Biochemistry, and Pharmacology, Vol. 4. Pergamon Press, Oxford.

    Google Scholar 

  • Bayon, C. 1980. Volatile fatty acids and methane production in relation to anaerobic carbohydrate fermentation in Oryctes nasicornis larvae (Coleoptera: Scarabaeidae). J. Insect Physiol. 26:819-828.

    Google Scholar 

  • Berenbaum, M. R. 1980. Adaptive significance of midgut pH in larval Lepidoptera. Am. Nat. 115:138-146.

    Google Scholar 

  • Berenbaum, M. R. 1991. Coumarins, pp. 221-249, in G. A. Rosenthal and M. R. Berenbaum (eds.). Herbivores; Their Interactions with Secondary Plant Metabolites. Vol. 1, The Chemical Participants. Academic Press, San Diego.

    Google Scholar 

  • Bernays, E. A., and Chapman, R. F. 1994. Host Plant Selection By Phytophagous Insects. Chapman and Hall, New York.

    Google Scholar 

  • Cooper, P. D., and Vulcano, R. 1997. Regulation of pH in the digestive system of the cricket, Teleogryllus commodus Walker. J. Insect Physiol. 43:495-499.

    Google Scholar 

  • Crowson, R. A. 1967. The Natural Classification of the Families of Coleoptera. E. W. Classey Ltd., Middlesex, UK.

    Google Scholar 

  • Dadd, R. H. 1975. Alkalinity within the midgut of mosquito larvae with alkaline-active digestive enzymes. J. Insect Physiol. 21:1847-1853.

    Google Scholar 

  • Ehrlich, P. R., and Murphy, D. D. 1988. Plant chemistry and host range in insect herbivores. Ecology 69:908-909.

    Google Scholar 

  • Espinoza-Fuentes, F. P., and Terra, W. R. 1987. Physiological adaptations for digesting bacteria. Water fluxes and distribution of digestive enzymes in Musca domestica larval midgut. Insect Biochem. 17:809-817.

    Google Scholar 

  • Espinoza-Fuentes, F. P., Ferreira, C., and Terra, W. R. 1984. Spatial organization of digestion in the larval and imaginal stages of the sciarid fly Trichosia pubescens. Insect Biochem. 14:631-638.

    Google Scholar 

  • Feeny, P. P. 1970. Seasonal changes in oak leaf tannins and nutrients as a cause of spring feeding by winter moth caterpillars. Ecology 51:565-581.

    Google Scholar 

  • Felton, G. W. 1996. Nutritive quality of plant protein: sources of variation and insect herbivore responses. Arch. Insect Biochem. Physiol. 32:107-130.

    Google Scholar 

  • Felton, G. W., and Duffey, S. S. 1991. Reassessment of the role of gut alkalinity and detergency in insect herbivory. J. Chem. Ecol. 17:1821-1836.

    Google Scholar 

  • Felton, G. W., Donato, K., Del Vecchio, R. J., and Duffey, S. S. 1989. Activation of plant foliar oxidases by insect feeding reduces the nutritive quality of foliage for noctuid herbivores. J. Chem. Ecol. 15:2667-2694.

    Google Scholar 

  • Felton, G. W., Donato, K. K., Broadway, R. M., and Duffey, S. S. 1992. Impact of oxidized plant phenolics on the nutritional quality of dietary protein to a noctuid herbivore, Spodoptera exigua. J. Insect Physiol. 38:277-285.

    Google Scholar 

  • Fieser, L. F., and Fieser, M. 1961. Advanced Organic Chemistry. Reinhold, New York.

    Google Scholar 

  • Gershenzon, J., and Croteau, R. 1991. Terpenoids, pp. 165-219, in G. A. Rosenthal and M. R. Berenbaum (eds.). Herbivores; Their Interactions with Secondary Plant Metabolites. Vol. 1, The Chemical Participants. Academic Press, San Diego.

    Google Scholar 

  • Greenberg, B. 1968. Micro-potentiometric pH determinations of muscoid maggot digestive tracts. Ann. Entomol. Soc. Am. 61:365-368.

    Google Scholar 

  • Hennig, W. 1973. Ordnung Diptera (Zweiflugler). Handb. Zool. 4(2)2/31(Lfg. 20): 1-337.

    Google Scholar 

  • Hennig, W. 1981. Insect Phylogeny. John Wiley & Sons, New York.

    Google Scholar 

  • Hernandez-Triana, M., Kroll, J., Proll, J., Noack, J., and Petzke, K. J. 1996. Benzyl-isothiocyanate (BITC) decreases quality of egg white proteins in rats. J. Nutr. Biochem. 7:322-326.

    Google Scholar 

  • Johnson, K. S., and Felton, G. W. 1996. Physiological and dietary influences on midgut redox conditions in generalist Lepidopteran larvae. J. Insect Physiol. 42:191-198.

    Google Scholar 

  • Kristensen, N. P. 1991. Phylogeny of extant hexapods, pp. 125-140, in I. D. Naumann (ed.). The Insects of Australia, Vol. 1, 2nd ed. Cornell University Press, Ithaca, New York.

    Google Scholar 

  • Lacey, L. A., and Federici, B. A. 1979. Pathogenesis and midgut histopathology of Bacillus thuringiensis in Simulium vittatum (Diptera: Simuliidae). J. Invert. Pathol. 33:171-182.

    Google Scholar 

  • Lawrence, J. F., and Britton, E. B. 1991. Coleoptera, pp. 543-683, in I. D. Naumann (ed.). The Insects of Australia, Vol. II, 2nd ed., Cornell University Press, Ithaca, New York.

    Google Scholar 

  • Leiner, I. E. 1991. Lectins, pp. 327-353, in G. A. Rosenthal and M. R. Berenbaum (eds.). Herbivores; Their Interactions with Secondary Plant Metabolites. Vol. 1, The Chemical Participants. Academic Press, San Diego.

    Google Scholar 

  • Lemos, F. J. A., and Terra, W. R. 1991a. Properties and intracellular distribution of a cathepsin D-like proteinase active at the acid region of Musca domestica midgut. Insect Biochem. 21:457-465.

    Google Scholar 

  • Lemos, F. J. A., and Terra, W. R. 1991b. Digestion of bacteria and the role of midgut lysozyme in some insect larvae. Comp. Biochem. Physiol. 100B:265-268.

    Google Scholar 

  • Louda, S., and Mole, S. 1991. Glucosinolates: Chemistry and ecology, pp. 124-164, in G. A. Rosenthal and M. R. Berenbaum (eds.). Herbivores; Their Interactions with Secondary Plant Metabolites. Vol. 1, The Chemical Participants. Academic Press, San Diego.

    Google Scholar 

  • Malcolm, S. B. 1991. Cardenolide-mediated interactions between plants and herbivores, pp. 251-296, in G. A. Rosenthal and M. R. Berenbaum (eds.). Herbivores; Their Interactions with Secondary Plant Metabolites. Vol. 1, The Chemical Participants. Academic Press, San Diego.

    Google Scholar 

  • Martin, J. S., Martin, M. M., and Bernays, E. A. 1987. Failure of tannic acid to inhibit digestion or reduce digestibility of plant protein in gut fluids of insect herbivores: Implications for theories of plant defense. J. Chem. Ecol. 13:605-621.

    Google Scholar 

  • Martin, M. M., Martin, J. S., Kukor, J. J., and Merritt, R. W. 1980. The digestion of protein and carbohydrate by the stream detritivore, Tipula abdominalis (Diptera, Tipulidae). Oecologia 46:360-364.

    Google Scholar 

  • Martin, M. M., Kukor, J. J., Martin, J. S., Lawson, D. L., and Merritt, R. W. 1981. Digestive enzymes of larvae of three species of caddisflies (Trichoptera). Insect Biochem. 11:501-505.

    Google Scholar 

  • Naumann, I. D. 1991. Hymenoptera, pp. 916-1000, in I. D. Naumann (ed.). The Insects of Australia, Vol. II, 2nd ed., Cornell University Press, Ithaca, New York.

    Google Scholar 

  • Nielsen, E. S., and Common, I. F. B. 1991. Lepidoptera, pp. 817-915, in I. D. Naumann (ed.). The Insects of Australia, Vol. II, 2nd ed., Cornell University Press, Ithaca, New York.

    Google Scholar 

  • Schumaker, T. T. S., Christofoletti, P. T., and Terra, W. R. 1993. Properties and compartmentalization of digestive carbohydrases and proteases in Scaptotrigona bipunctata (Apidae: Meliponinae) larvae. Apidologie 24:3-17.

    Google Scholar 

  • Scriber, J. M., and Slansky, F., Jr. 1981. The nutritional ecology of immature insects. Annu. Rev. Entomol. 26:183-211.

    Google Scholar 

  • Shinoda, O. 1930. Contributions to the knowledge of intestinal secretions in insects. Comparison of pH optima of the digestive enzymes from different groups of insects. A preliminary note. Kyoto Imp. Univ. Anniv. Vol., pp. 9-24.

  • Sokal, R. R., and Rohlf, F. J. 1969. Biometry, 1st ed. W. H. Freeman and Co., New York.

    Google Scholar 

  • Stiles, B., and Paschke, J. D. 1980. Midgut pH in different instars of three Aedes mosquito species and the relation between pH and susceptibility of larvae to a nuclear polyhedrosis virus. J. Invert. Pathol. 35:58-64.

    Google Scholar 

  • Suberkropp, K., Godshalk, G. L., and Klug, M. J. 1976. Changes in chemical composition of leaves during processing in a woodland stream. Ecology 57:707-719.

    Google Scholar 

  • Terra, W. R. 1988. Physiology and biochemistry of insect digestion: An evolutionary perspective. Braz. J. Med. Biol. Res. 21:675-734.

    Google Scholar 

  • Terra, W. R., and Ferreira, C. 1994. Insect digestive enzymes: Properties, compartmentalization and function. Comp. Biochem. Physiol. 109B:1-62.

    Google Scholar 

  • Terra, W. R., and Regel, R. 1995. pH buffering in Musca domestica midguts. Comp. Biochem. Physiol. 112A:559-564.

    Google Scholar 

  • Terra, W. R., Ferreira, C., and De Bianchi, A. G. 1979. Distribution of digestive enzymes among the endo-and ectoperitrophic spaces and midgut cells of Rhynchosciara and its physiological significance. J. Insect Physiol. 25:487-494.

    Google Scholar 

  • Terra, W. R., Ferreira, C., and Baker, J. E. 1996. Compartmentalization of digestion, pp. 206-235, in M. J. Lehane and P. F. Billingsley (eds.). Biology of the Insect Midgut. Chapman and Hall, London.

    Google Scholar 

  • Undeen, A. H. 1979. Simuliid larval midgut pH and its implications for control. Mosquito News 39:391-393.

    Google Scholar 

  • Waterhouse, D. F. 1949. The hydrogen ion concentration in the alimentary canal of larval and adult Lepidoptera. Aust. J. Sci. Res. B 132:428-437.

    Google Scholar 

  • Whiting, M. F., Carpenter, J. C., Wheeler, Q. D., and Wheeler, W. C. 1997. The Strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequences and morphology. Syst. Biol. 46:1-68.

    Google Scholar 

  • Wood, D. M., and Borkent, A. 1989. Phylogeny and Classification of the Nematocera, pp. 1333-1370, in J. F. McAlpine (ed.). Manual of Nearctic Diptera, Vol. 3. Research Branch, Agriculture Canada, Monograph 32.

    Google Scholar 

  • Woodley, N. E. 1989. Phylogeny and classification of the “Orthorrhaphous” Brachycera, pp. 1371-1395, in J. F. McAlpine (ed.). Manual of Nearctic Diptera, Vol. 3. Research Branch, Agriculture Canada, Monograph 32.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clark, T.M. Evolution and Adaptive Significance of Larval Midgut Alkalinization in the Insect Superorder Mecopterida. J Chem Ecol 25, 1945–1960 (1999). https://doi.org/10.1023/A:1020946203089

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020946203089

Navigation