Skip to main content
Log in

Chemical Ecology of the Defense of Two Nymphalid Butterfly Larvae Against Ants

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

We analyzed the behavioral responses of the ants Camponotus rufipes and Solenopsis geminata towards all instars of Dione junio and Abananote hylonome. We also analyzed ant behavior towards hexane extracts of larvae and extracts of the spines and neck glands of the fifth instars of both species and identified the chemical compounds present. Larvae of both species were repellent to ants from the first instar onward. Later instars survived ant attacks better than earlier instars. The spines and neck glands of the larvae influenced the behavior of C. rufipes. The chemical compounds contained in the hexane extracts of whole first and fifth instars and in the spines and neck glands of fifth instars were principally carboxylic acids and terpenes. Further bioassays confirmed the repellent effect of some of these acids toward ants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Attygalle, A. B., Meinwald, J., and Eisner, T. 1992. Defensive secretion of the carabid beetle, Helluomorphoides clairvillei. J. Chem. Ecol. 18:489–498.

    Google Scholar 

  • Attygalle, A. B., Smedley, S. R., Meinwald, J., and Eisner, T. 1993. Defensive secretion of two notodontid caterpillars (Schizura unicornis, S. badia). J. Chem. Ecol. 19:2089–2104.

    Google Scholar 

  • Bernays, E. A. 1988. Host specificity in phytophagous insects: Selection pressure from generalist predators. Entomol. Exp. Appl. 49:131–140.

    Google Scholar 

  • Bernays, E. A., and Cornelius, M. L. 1989. Generalist caterpillar prey are more palatable than specialists for the generalist predator Iridomyrmex humulis. Oecologia 79:427–430.

    Google Scholar 

  • Brower, L. P., Brower, J. V. Z., and Collins, C. T. 1963. Experimental studies on mimicry. 7. Relative palatability and Müllerian mimicry among neotropical butterflies of the subfamily Heliconiinae. Zool. N. Y. 48:65–84.

    Google Scholar 

  • Brower, L. P., Brower, J. V. Z., and Corvino, J. M. 1967. Plant poisons in a terrestrial food chain. Proc. Natl. Acad. Sci. U.S.A. 57:893–898.

    Google Scholar 

  • Brown, K. S., and Francini, R. B. 1990. Evolutionary strategies of chemical defense in aposematic butterflies: Cyanogenesis in Asteraceae-feeding American Acraeinae. Chemoecology 1:52–56.

    Google Scholar 

  • Codella, S. G., and Raffa, K. F. 1995. Contributions of female oviposition patterns and larval behavior to group defense in conifer sawflies (Hymenoptera: Diprionidae). Oecologia 103:24–33.

    Google Scholar 

  • Dani, F. R., Cannoni, S., Turillazzi, S., and Morgan, E. D. 1996. Ant repellent effect of the sternal gland secretion of Polistes dominulus (Christ) and P. sulcifer (Zimmerman) (Hymenoptera: Vespidae). J. Chem. Ecol. 22:37–48.

    Google Scholar 

  • Deml, R., and Dettner, K. 1993. Biogenic amines and phenolics characterize the defensive secretion of saturnid caterpillars (Lepidoptera: Saturniidae): A comparative study. J. Comp. Physiol. B. 163:123–132.

    Google Scholar 

  • Deml, R., and Dettner, K. 1994. Attacus atlas caterpillars (Lep., Saturniidae) spray an irritant secretion from defensive glands. J. Chem. Ecol. 20:2127–2138.

    Google Scholar 

  • Deml, R., and Dettner, K. 1995. Effects of emperor moth larval secretions, hemolymph, and components on microorganisms and predators. Entomol. Exp. Appl. 76:287–293.

    Google Scholar 

  • Dettner, K., and Leipert, C. 1994. Chemical mimicry and camouflage. Annu. Rev. Entomol. 39:129–154.

    Google Scholar 

  • DeVries, P. J. 1987. The Butterflies of Costa Rica and Their Natural History. Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Dyer, L. A. 1995. Tasty generalists and nasty specialists? Antipredator mechanisms in tropical lepidopteran larvae. Ecology 76:1483–1496.

    Google Scholar 

  • Dyer, L. A., and Flyod, T. 1993. Determinants of predation on phytophagous insects: the importance of diet breadth. Oecologia 96:575–582.

    Google Scholar 

  • Eisner, T. F., Kluge, K. F., Carrel, J. C., and Meinwald, J. 1972. Defensive mechanisms of arthropods. XXXIV. Formic acid and acyclic ketones in the spray of a caterpillar. Ann. Entomol. Soc. Am. 65:765–766.

    Google Scholar 

  • Franzl, S., and Naumann, C. M. 1985. Cuticular cavities: Storage chambers for cyanoglucoside containing cavities in larvae of a zygaenid moth. Tissue Cell. 17:267–278.

    Google Scholar 

  • HernÁndez, J. V. 1996. Ecología química del comportamiento agnóstico de Atta laevigata (Hymenoptera: Formicidae). PhD thesis. Universidad Simon Bolivar, Caracas.

    Google Scholar 

  • Honda, K. 1981. Larval osmeterial secretions of the swallowtails (Papilio). J. Chem. Ecol. 7:1089–1113.

    Google Scholar 

  • Honda, K. 1983. Defensive potential of components of the larval osmeterial secretion of papilionid butterflies against ants. Physiol. Entomol. 8:173–179.

    Google Scholar 

  • Howard, D. F., Blum, M. S., Jones, T. H., and Phillips, D. W.. 1982. Defensive adaptions of eggs and adults of Gastrophysa cyanea (Coleoptera: Chrysomelidae). J. Chem. Ecol. 8:453–462.

    Google Scholar 

  • Jaffe, K., Mauleon, H., and Kermarrec, A. 1991. Qualitative evaluation of ants as biological control agents with special reference to predators on Diaprepes spp. (Coleoptera: Curculionidae) in citrus groves in Martinique and Guadeloupe, pp. 405–416, in C. Pavis and A. Kermarrec (eds.). Rencontres Caraibes en Lutte Biologique, INRA, Paris.

    Google Scholar 

  • Montllor, C. B., Bernays, E. A., and Cornelius, M. L. 1991. Responses of two hymenopteran predators to surface chemistry of their prey: Significance for an alkaloid-sequestering caterpillar. J. Chem. Ecol. 17:391–399.

    Google Scholar 

  • Nahrstedt, A., and Davis, R. H. 1983. Occurrence, variation and biosynthesis of the cyanogenic glucosides linamarin and lotaustralin in species of the Heliconiini (Insecta: Lepidoptera). Comp. Biochem. Physiol. 75B:65–73.

    Google Scholar 

  • Nahrstedt, A., and Davis, R. H. 1985. Biosynthesis and quantitative relationships of the cyanogenic glucosides linamarin and lotaustralin in genera of the Heliconiini (Insecta: Lepidoptera). Comp. Biochem. Physiol. 82B:745–749.

    Google Scholar 

  • Nickisch-Rosenegk, E. VON, and Wink, M. 1993. Sequestration of pyrrolizidine alkaloids in several arctiid moths (Lepidoptera: Arctiidae). J. Chem. Ecol. 19:1889–1903.

    Google Scholar 

  • Nowbahari, B., and Thibout, E. 1992. Defensive role of Allium sulfur compounds for leek moth Acrolepiopsis assectella Z. (Lepidoptera) against generalist predators. J. Chem. Ecol. 18:1991–2002.

    Google Scholar 

  • Pavis, C., Maloose, C., Ducrot, F., Howse, P. E., Jaffe, K., and Descoins, C. 1992. Defensive secretion of first-instar larvae of rootstalk borer weevil, Diaprepes abbreviatus L. (Coleoptera: Curculionidae), to the fire-ant Solenopsis geminata (F.) (Hymenoptera: Formicidae). J. Chem. Ecol. 18:2055–2067.

    Google Scholar 

  • Perfecto, I. 1991. Ants (Hymenoptera: Formicidae) as natural control agents of pests in irrigated maize in Nicaragua. Environ. Entomol. 84:65–70.

    Google Scholar 

  • Reimann, H. 1983. Chemische Zusammensetzung und Wirksamkeit des Wehreskretes der Larven von Zygaena trifoloo (Esper. 1793). Lepidoptera. Staatsexamensarbeit. University of Bielefeld.

  • Risch, S. J., and Carroll, C. R. 1982a. The ecological role of ants in two Mexican agroecosystems. Oecologia 55:114–119.

    Google Scholar 

  • Risch, S. J., and Carroll, C. R. 1982b. Effect of a keystone predaceous ant, Solenopsis geminata, on arthropods in a tropical agroecosystem. Ecology 63:1979–1983.

    Google Scholar 

  • Rockstein, M. 1978. Biochemistry of Insects. Academic Press, 649 pp.

  • Siegel, S., and Castellan, N. J. 1988. Nonparametric Statistics for the Behavioral Sciences, 2nd ed. McGraw-Hill, New York.

    Google Scholar 

  • Sokal, R. R., and Rohlf, F. J. 1981. Biometry. W. H. Freeman, San Francisco.

    Google Scholar 

  • Vulinec, K. 1990. Collective security: aggregation by insects as a defense, pp. 251–288, in D. L. Evans and J. O. Schmidt (eds.). Insect Defenses: Adaptive Mechanisms and Strategies of Prey and Predators. State University of New York Press, Albany.

    Google Scholar 

  • Way, M. J., and Khoo, K. C. 1992. Role of ants in pest management. Annu. Rev. Entomol. 37:479–503.

    Google Scholar 

  • Weatherston, J., Percy, J. E., MacDonald, L. M., and MacDonald, J. A. 1979. Morphology of the prothoratic defensive gland of Schizura concinna (Lepidoptera: Notodontidae) and the nature of its secretion. J. Chem. Ecol. 5:165–178.

    Google Scholar 

  • Weseloh, R. M. 1989. Simulation of predation by ants based on direct observations of attacks on gypsy moth larvae. Can. Entomol. 121:1069–1076.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osborn, F., Jaffe, K. Chemical Ecology of the Defense of Two Nymphalid Butterfly Larvae Against Ants. J Chem Ecol 24, 1173–1186 (1998). https://doi.org/10.1023/A:1022494802266

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022494802266

Navigation