Skip to main content
Log in

Sequestration of lichen compounds by three species of terrestrial snails

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Three species of lichen-grazing snails,Balea perversa, Chondria clienta, andHelicigona lapicida, all from the Swedish island of Öland, were found to sequester lichen compounds when feeding on the crustous lichen speciesAspicila calcarea, Caloplaca flavovirescens, Lecanora muralis, Physcia adscendens, Tephromela atra, andXanthoria parietina. The lichen compounds detected in the soft bodies of the snail species analyzed included the anthraquinone parietin, the depside atranorin, as well as a presumable degradation product of the latter. Other lichen compounds such as (+)-usnic acid or α-collatolic acid were not found in the soft bodies but were only detected in the feces, suggesting selective uptake of lichen compounds by the snails. In individuals ofC. clienta initially fed on the lichenX. parietina, the amount of sequestered parietin decreased over time on a parietin-free diet but was still detectable in the soft bodies after 28 days. In the ovoviviparous land snail,B. perversa, sequestered parietin was transferred from the mother to the eggs in the reproductive tract.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baur, B. 1987. Richness of land snail species under isolated stones in a karst area on Öland, Sweden.Basteria 51:129–133.

    Google Scholar 

  • Baur, B. 1988. Microgeographical variation in shell size of the land snailChondrina clienta.Biol. J. Linn. Soc. 35:247–259.

    Google Scholar 

  • Baur, B. 1990. Intra- and interspecific influences on age at first reproduction and fecundity in the land snailBelea perversa.Oikos 57:333–337.

    Google Scholar 

  • Baur, B., andBaur, A. 1990. Experimental evidence for intra-and interspecific competition in two species of rock-dwelling land snails.J. Anim. Ecol. 59:301–315.

    Google Scholar 

  • Baur, A., Baur, B., andFröberg, L. 1992. The effect of lichen diet on growth rate in the rockdwelling land snailsChondrina clienta (Westerlund) andBalea perversa (Linnaeus).J. Moll. Stud. 58:345–347.

    Google Scholar 

  • Baur, A., Baur, B., andFröberg, L. 1994. Herbivory on calcicolous lichens: different food preferences and growth rates in two co-existing land snails.Oecologia 98:313–319.

    Google Scholar 

  • Brattsten, L.B. 1986. Fate of ingested plant allelochemicals in herbivorous insects, pp. 211–255, L.B. Brattsten, S. Ahmad,in Molecular Aspects of Insect-Plant Associations. Plenum Press, New York.

    Google Scholar 

  • Breure, A.S.H., andGittenberger, E. 1982. The rock-scraping radula, a striking case of convergence (Mollusca).Neth. J. Zool. 32:307–312.

    Google Scholar 

  • Crittenden, P.D., andPorter, N. 1991. Lichen forming fungi: potential sources of novel metabolites.Tib. Tech. 9:409–414.

    Google Scholar 

  • Ehmke, A., Witte, L., Biller, A., andHartmann, T. 1990. Sequestration,N-oxidation and transformation of plant pyrrolizidine alkaloids by the Arctiid mothTyria jacobaeae L.Z. Naturforsch. 45c:1185–1192.

    Google Scholar 

  • Emmerich, R., Giez, I., Lange, O.L., andProksch, P. 1993. Toxicity and antifeedant activity of lichen compounds against the polyphagous herbivorous insectSpodoptera littoralis.Phytochemistry 33:1389–1394.

    Google Scholar 

  • Faulkner, D.J. 1992. Chemical defenses of marine molluscs, pp. 119–163, (V.J. Paul, ed.).in Ecological Roles of Marine Natural Products. Comstock, Ithaca.

    Google Scholar 

  • Fröberg, L. 1989. The calcicolous lichens on the Great Alvar of Öland, Sweden. PhD thesis. University of Lund.

  • Fröberg, L., Baur, A., andBaur, B. 1993. Differential herbivore damage to calcicolous lichens by snails.Lichenologist 25:83–95.

    Google Scholar 

  • Giez, I., Lange, O.L., andProksch, P. 1994. Growth retarding activity of lichen substances against the polyphagous herbivorous insectSpodoptera littoralis.Biochem. Syst. Ecol. 22:113–120.

    Google Scholar 

  • Hay, M.E., andFenical, W. 1988. Marine plant-herbivore interactions: The ecology of chemical defense.Ann. Rev. Ecol. Syst. 19:111–145.

    Google Scholar 

  • Hilker, M., Eschbach, U., andDettner, K. 1992. Occurrence of anthraquinones in eggs and larvae of several Galerucinae (Coleoptera: Chrysomelidae).Naturwissenschaften 79:271–274.

    Google Scholar 

  • Kerney, M.P., andCameron, R.A.D. 1979. A Field Guide to the Land Snails of Britain and North-west Europe. Collins, London.

    Google Scholar 

  • Lawrey, J.D. 1986. Biological roles of lichen substances.Bryologist 89:111–122.

    Google Scholar 

  • Lawrey, J.D. 1989. Lichen secondary compounds: Evidence for a correspondence between antiherbivore and antimicrobial function.Bryologist 92:326–328.

    Google Scholar 

  • Lawrey, J.D. 1991. Biotic interactions in lichen community development: A review.Lichenologist 23:205–214.

    Google Scholar 

  • Malcolm, S.B. 1990. Chemical defense in chewing and sucking insect herbivores: Plant derived cardenolides in the monarch butterfly and oleander aphid.Chemoecology 1:12–21.

    Google Scholar 

  • Nueckel, W. 1981. Zu Aktivitätsregelung und Wasserhaushalt vonChondrina avenacea (Bruguiere 1792), einer Felsen bewohnenden Landlungenschnecke. PhD thesis, University of Basel.

  • Proksch, P. 1994. Defensive roles for secondary metabolites from marine sponges and sponge-feeding nudibranchs.Toxicon 32:639–655.

    PubMed  Google Scholar 

  • Rambold, G. 1985. Fütterungsexperimente mit den an Flechten lebenden Raupen vonSetina aurita Esp. Nachrichtenblatt bayer.Entomology 34:82–90.

    Google Scholar 

  • Reutimann, P., andScheidegger, C. 1987. Importance of lichen secondary products in food choice of two oribatid mites (Acari) in an Alpine meadow ecosystem.J. Chem. Ecol. 13:363–370.

    Google Scholar 

  • Rodgers, S.D., andPaul, V.J. 1991. Chemical defenses of threeGlossodoris nudibranchs and their dietaryHyrtios sponges.Mar. Ecol. Progr. Ser. 77:221–232.

    Google Scholar 

  • Schmid, G. 1929. Endolithische Kalkflechten und Schneckenfrass.Biol. Zentralbl. 49:28–35.

    Google Scholar 

  • Seyd, E.L., andSeaward, M.R.D. 1984. The association of oribatid mites with lichens.Zool. J. Linn. Soc. 80:369–420.

    Google Scholar 

  • Slansky, F. 1979. Effect of the lichen chemicals atranorin and vulpinic acid upon feeding and growth of larvae of the yellow-striped armywormSpodoptera ornithogalli.Environ. Entomol. 8:865–868.

    Google Scholar 

  • Stahl, E. 1904. Die Schutzmittel der Flechten gegen Tierfrass, pp. 357–375,in Festschrift zum 70. Geburtstag von Ernst Haeckel. G. Fischer Verlag, Jena.

    Google Scholar 

  • Wiesen, B., Krug, E., Fiedler, K., Wray, V., andProksch, P. 1994. Sequestration of host-plant derived flavonoids by the Lycaenid butterflyPolyommatus icarus.J. Chem. Ecol. 20:2523–2538.

    Google Scholar 

  • Zopf, W. 1896. Flechtenstoffe. G. Fischer Verlag, Jena.

    Google Scholar 

  • Zukal, H. 1895. Morphologische und biologische Untersuchungen über die Flechten.Sber. K. Böhm. Ges. Wiss. Math.-Nat. Kl. 104:1303–1395.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. Dr. F.-C. Czygan on the occasion of his 60th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hesbacher, S., Baur, B., Baur, A. et al. Sequestration of lichen compounds by three species of terrestrial snails. J Chem Ecol 21, 233–246 (1995). https://doi.org/10.1007/BF02036654

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02036654

Key Words

Navigation