Skip to main content
Log in

On Lyapunov Exponents for Non-Smooth Dynamical Systems with an Application to a Pendulum with Dry Friction

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

We consider dynamical systems from mechanics for which, due to some non-smooth friction effects, Oseledets' Multiplicative Ergodic Theorem cannot be applied canonically to define Lyapunov exponents. For general non-smooth systems which fit into a natural formal framework, we construct a suitable cocycle which lives on a “good” invariant set of full Lebesgue measure. Afterwards, this construction is applied to investigate a pendulum with dry friction, described through the equation \(\ddot x + x + \operatorname{sgn} \dot x = \gamma \sin (\eta t)\). The Lyapunov exponents obtained by our construction show a good agreement with the dynamical behaviour of the system, and since we will prove that these Lyapunov exponents are always non-positive, we conclude that the system does not show “chaotic behaviour.”

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Alfsen, E. M. (1971). Compact Convex Sets and Boundary Integrals, Springer, Berlin/ Heidelberg/New York.

    Google Scholar 

  2. Andronov, A. A., and Chaikin, C. E. (1949). Theory of Oscillations, Princeton University Press, Princeton.

    Google Scholar 

  3. Bainov, D. D., Zabreiko, P. P., and Kostadinov, S. T. (1988). Stability of the general exponent of nonlinear impulsive differential equations in a Banach space. Int. J. Theoretical Phys. 27, 373-380.

    Article  Google Scholar 

  4. Berger, B. S., and Rokni, M. (1990). Lyapunov exponents for discontinuous differential equations. Quarterly Appl. Math. 48, 549-553.

    Google Scholar 

  5. Budd, C., and Dux, F. (1994). Intermittency in impact oscillators close to resonance. Nonlinearity 7, 1191-1224.

    Article  Google Scholar 

  6. Budd, C., and Lamba, H. (1994). Scaling of Lyapunov exponents at nonsmooth bifurcations. Phys. Rev. E 50, 84-90.

    Article  Google Scholar 

  7. Deimling, K. (1985). Nonlinear Functional Analysis, Springer, Berlin/Heidelberg/New York/Tokyo.

    Google Scholar 

  8. Deimling, K. (1992). Multivalued Differential Equations, de Gruyter, Berlin/New York.

    Google Scholar 

  9. Deimling, K. (1994). Resonance and Coulomb friction. Diff. Int. Eq. 7, 759-765.

    Google Scholar 

  10. Deimling, K., and Szilágyi, P. (1994). Periodic solutions of dry friction problems. Z. Angew. Math. Phys. 45, 53-60.

    Google Scholar 

  11. Eckmann, J. P., and Ruelle, D. (1985). Ergodic theory of chaos and strange attractors. Reviews of Modern Phys. 57, 617-656.

    Article  Google Scholar 

  12. Fečkan, M. (1996). Bifurcations from homoclinic to periodic solutions in ordinary differential equations with multivalued perturbations. J. Diff. Eq. 130, 415-450.

    Article  Google Scholar 

  13. Filippov, A. F. (1988). Differential Equations with Discontinuous Right-Hand Sides, Kluwer Academic, Dordrecht/Boston/London.

    Google Scholar 

  14. Galvanetto, U., and Bishop, S. R. (1995). Characterization of the dynamics of a four-dimensional stick-slip system by a scalar variable. Chaos, Solitons & Fractals 5, 2171-2179.

    Google Scholar 

  15. Georgii, H. O. (1988). Gibbs Measures and Phase Transitions, de Gruyter, Berlin/New York.

    Google Scholar 

  16. Katok, A., and Strelcyn, V. (1986). Invariant Manifolds, Entropy and Billiards; Smooth Maps with Singularities, Lecture Notes in Mathematics, Vol. 1222, Springer, Berlin/Heidelberg/New York/Tokyo.

    Google Scholar 

  17. Kauderer, H. (1958). Nichtlineare Mechanik, Springer, Berlin/Heidelberg.

    Google Scholar 

  18. Kunze, M. (1998). Unbounded solutions in non-smooth dynamical systems at resonance. Z. Angew. Math. Mech. 78, Supplement 3, S985-S986.

    Google Scholar 

  19. Kunze, M., and Küpper, T. (1997). Qualitative bifurcation analysis of a non-smooth friction-oscillator model. Z. Ang. Math. Phys. 48, 1-15.

    Google Scholar 

  20. Kunze, M., and Michaeli, B. (1995). On the rigorous applicability of Oseledets' ergodic theorem to obtain Lyapunov exponents non-smooth dynamical systems, to appear in Proc. 2nd Marrakesh International Conference on Differential Equations, June 1995, Ed. O. Arino.

  21. Lamba, H. (1993). Impacting Oscillators and Non-Smooth Dynamical Systems, Ph.D. thesis, University of Bristol.

  22. Ledrappier, F. (1984). Quelques proprietés des exposants characteristiques. In Hennequin P. L. (ed.), École d'Été de Probabilités de Saint-Flour XII-1982, Lecture Notes in Mathematics, Vol. 1097, Springer, Berlin/Heidelberg/New York/Tokyo, pp. 305-396.

    Google Scholar 

  23. Michaeli, B. (1999). Lyapunov-Exponenten für nichtglatte dynamische Systeme, Ph.D. thesis, Universität Köln.

  24. Müller, P. C. (1995). Calculation of Lyapunov exponents for dynamic systems with discontinuities. Chaos, Solitons & Fractals 5, 1671-1681.

    Google Scholar 

  25. Oestreich, M., Hinrichs, N., and Popp, K. (1996). Bifurcation and stability analysis for a non-smooth friction oscillator. Archive of Applied Mechanics 66, 301-314.

    Google Scholar 

  26. Oseledets, V. I. (1968). A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems. Trans. Mosc. Math. Soc. 19, 197-231.

    Google Scholar 

  27. Pollicott, M. (1993). Lectures on Ergodic Theory and Pesin Theory on Compact Manifolds, London Math. Soc. LNS, Vol. 180, Cambridge University Press, Cambridge.

    Google Scholar 

  28. Popp, K., Hinrichs, N., and Oestreich, M. (1995). Dynamical behaviour of a friction oscillator with simultaneous self and external excitation, Sādhanā 20, 627-654.

    Google Scholar 

  29. Popp, K., and Stelter, P. (1990). Stick-slip vibrations and chaos, Phil. Trans. Roy. Soc. Lond. A 332, 89-105.

    Google Scholar 

  30. Reissig, R. (1953). Ñber die Differentialgleichung \({{d^2 x} \mathord{\left/ {\vphantom {{d^2 x} {d\tau + 2D \cdot \left( {{{dx} \mathord{\left/ {\vphantom {{dx} {d\tau }}} \right. \kern-\nulldelimiterspace} {d\tau }}} \right) + \mu \cdot \operatorname{sgn} \left( {{{dx} \mathord{\left/ {\vphantom {{dx} {d\tau }}} \right. \kern-\nulldelimiterspace} {d\tau }}} \right) + x = \Phi }}} \right. \kern-\nulldelimiterspace} {d\tau + 2D \cdot \left( {{{dx} \mathord{\left/ {\vphantom {{dx} {d\tau }}} \right. \kern-\nulldelimiterspace} {d\tau }}} \right) + \mu \cdot \operatorname{sgn} \left( {{{dx} \mathord{\left/ {\vphantom {{dx} {d\tau }}} \right. \kern-\nulldelimiterspace} {d\tau }}} \right) + x = \Phi }}\left( {\eta \tau } \right),wo\Phi \left( {\eta \tau + 2\pi } \right) \equiv {{d^2 x} \mathord{\left/ {\vphantom {{d^2 x} {d\tau + 2D \cdot \left( {{{dx} \mathord{\left/ {\vphantom {{dx} {d\tau }}} \right. \kern-\nulldelimiterspace} {d\tau }}} \right) + \mu \cdot \operatorname{sgn} \left( {{{dx} \mathord{\left/ {\vphantom {{dx} {d\tau }}} \right. \kern-\nulldelimiterspace} {d\tau }}} \right) + x = \Phi }}} \right. \kern-\nulldelimiterspace} {d\tau + 2D \cdot \left( {{{dx} \mathord{\left/ {\vphantom {{dx} {d\tau }}} \right. \kern-\nulldelimiterspace} {d\tau }}} \right) + \mu \cdot \operatorname{sgn} \left( {{{dx} \mathord{\left/ {\vphantom {{dx} {d\tau }}} \right. \kern-\nulldelimiterspace} {d\tau }}} \right) + x = \Phi }}\left( {\eta \tau } \right)\) ist. Das Verhalten der Lösungen für τ \(\tau \to \infty \). Abhandlungen der Deutschen Akademie der Wissenschaften zu Berlin, Klasse für Mathematik und Naturwissenschaften 1.

  31. Reissig, R. (1954). Erzwungene Schwingungen mit zäher und trockner Reibung. Math. Nachr. 11, 345-384.

    Google Scholar 

  32. Reissig, R. (1954). Erzwungene Schwingungen mit zäher Reibung und starker Gleitreibung II. Math. Nachr. 12, 119-128.

    Google Scholar 

  33. Reissig, R. (1954). Erzwungene Schwingungen mit zäher und trockner Reibung: Ergänzung. Math. Nachr. 12, 249-252.

    Google Scholar 

  34. Reissig, R. (1954). Erzwungene Schwingungen mit zäher und trockner Reibung: Abschätzung der Amplituden. Math. Nachr. 12, 283-300.

    Google Scholar 

  35. Ruelle, D. (1979). Ergodic theory of differentiable dynamical systems. Publ. Math. IHES 50, 275-306.

    Google Scholar 

  36. Schneider, E., Popp, K., and Irretier, H. (1988). Noise generation in railway wheels due to rail-wheel contact forces, J. Sound Vib. 120, 227-244.

    Article  Google Scholar 

  37. Schwartz, J. T. (1969). Nonlinear Functional Analysis, Gordon and Breach, New York.

    Google Scholar 

  38. Wiederhöft, A. (1994). Der periodisch erregte Einmassenreibschwinger, Diplom Thesis, Universität Köln.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kunze, M. On Lyapunov Exponents for Non-Smooth Dynamical Systems with an Application to a Pendulum with Dry Friction. Journal of Dynamics and Differential Equations 12, 31–116 (2000). https://doi.org/10.1023/A:1009046702601

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009046702601

Navigation