Skip to main content
Log in

Optical Effects Associated with Aggregates of Clusters

  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The effect of aggregation on the optical properties of nanometer-sized particles is studied. It is shown that for small noble metal clusters as well as for pigments of Fe2O3, TiN, or ZrN, the aggregation leads to changes in the color of the colloidal systems which are caused by electromagnetic coupling among the clusters in the aggregates. The model of interacting particles is shown to be helpful also for interpretation of optical properties of organic dyes with incorporated metal clusters and for interpretation of the reflectance of magnetooptical cluster systems. For soot particles it is shown that scattering and absorption are enhanced over the whole visible spectral region compared to isolated carbonaceous clusters. Finally, it is shown that the model of interacting clusters can also be applied for data interpretation in scanning near-field optical microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. G. Mie (1908). Ann. Phys. 25, 377.

    Google Scholar 

  2. P. Debye (1909). Ann. Phys. 30, 57.

    Google Scholar 

  3. S. Asano and G. Yamamoto (1975). Appl. Opt. 14, 29.

    Google Scholar 

  4. W. Seitz (1906). Ann. Phys. 21, 1013.

    Google Scholar 

  5. W. v. Ignatowski (1905). Ann. Phys. 18, 495.

    Google Scholar 

  6. S. J. Bever and J. P. Allebach (1992). Appl. Opt. 31, 3524.

    Google Scholar 

  7. H. A. Yousif and S. Köhler (1988). J. Opt. Soc. Am. 5, 1085; J. Opt. Sco. Am. 5, 1097.

    Google Scholar 

  8. H. A. Yousif, R. E. Mattis, and K. Kozminski (1994). Appl. Opt. 33, 4013.

    Google Scholar 

  9. M. F. R. Cooray and I. R. Ciric (1989). IEEE Trans. AP-37, 608; (1991). IEEE Trans. AP-39, 680.

    Google Scholar 

  10. W. Trinks (1935). Ann. Phys. 22, 561.

    Google Scholar 

  11. D. Langbein, Van der Waals Attraction, Springer Tracts in Modern Physics 72 (Springer, Berlin, 1972).

    Google Scholar 

  12. F. Borghese, P. Denti, G. Toscano, and O. I. Sindoni (1979). Appl. Opt. 18, 116.

    Google Scholar 

  13. J. M. Gérardy and M. Ausloos (1980). Phys. Rev. B 22, 4950.

    Google Scholar 

  14. J. M. Gérardy and M. Ausloos (1982). Phys. Rev. B 25, 4204.

    Google Scholar 

  15. J. M. Gérardy and M. Ausloos (1983). Phys. Rev. B 27, 6446.

    Google Scholar 

  16. J. M. Gérardy and M. Ausloos (1984). Phys. Rev. B 30, 2167.

    Google Scholar 

  17. K. A. Fuller, G. W. Kattawar, and R. T. Wang (1986). Appl. Opt. 25, 2521.

    Google Scholar 

  18. K. A. Fuller and G. W. Kattawar (1988). Opt. Lett. 13, 90; Opt. Lett. 13, 1063.

    Google Scholar 

  19. K. A. Fuller (1991). Appl. Opt. 30, 4716.

    Google Scholar 

  20. K. A. Fuller (1994). J. Opt. Soc. Am. A 11, 3251.

    Google Scholar 

  21. R. Ruppin (1989). J. Phys. Soc. Jpn. 58, 1446.

    Google Scholar 

  22. A.-K. Hamid, I. R. Ciric, and M. Hamid (1990). Can. J. Phys. 68; 1157; Can. J. Phys. 68, 1419.

    Google Scholar 

  23. A.-K. Hamid, I. R. Ciric, and M. Hamid (1991). Proc. IEE. Part H 138, 565.

    Google Scholar 

  24. A.-K. Hamid, I. R. Ciric, and M. Hamid, Proceedings of Progress in Electromagnetic Research Symposium (PIERS) (MIT, Cambridge; MA 1991).

    Google Scholar 

  25. A.-K. Hamid, I. R. Ciric, and M. Hamid, Proceedings IEEE AP-S International Symposium (University of Western Ontario, London. 1991).

    Google Scholar 

  26. D. W. Mackowski (1994). J. Opt. Soc. Am. 11, 2851.

    Google Scholar 

  27. M. I. Mishenko (1991). J. Opt. Soc. Am. A 8, 871.

    Google Scholar 

  28. M. I. Mishenko and D. W. Mackowski (1994). Opt. Lett. 19, 1604.

    Google Scholar 

  29. J. Sotelo and G. A. Niklasson (1991). Z. Phys. D 20, 321.

    Google Scholar 

  30. M. Quinten and U. Kreibig (1986). Surf. Sci. 172, 557.

    Google Scholar 

  31. M. Quinten and U. Kreibig, in G. Gouesbet and G. Gréhan (Eds.), Optical Particle Sizing (Plenum Press, New York. 1988), pp. 249–258.

    Google Scholar 

  32. M. Quinten, D. Schönauer, and U. Kreibig (1989). Z. Phys. D 12, 521.

    Google Scholar 

  33. U. Kreibig, M. Quinten, and D. Schönauer (1986). Phys. Scripta T13, 84.

    Google Scholar 

  34. U. Kreibig, M. Quinten, and D. Schönauer, in NATO-ASI Report: Time Dependent Effects in Disordered Materials (Geilo, 1987).

  35. U. Kreibig, M. Quinten, and D. Schönauer (1989). Physica A 157, 244.

    Google Scholar 

  36. U. Kreibig, K. Fauth, D. Schönauer, and M. Quinten (1989). Z. Phys. D 12, 505.

    Google Scholar 

  37. D. Schönauer, M. Quinten, and U. Kreibig (1989). Z. Phys. D 12, 527.

    Google Scholar 

  38. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).

    Google Scholar 

  39. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic Press, New York, 1969).

    Google Scholar 

  40. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

    Google Scholar 

  41. J. A. Stratton, Electrodynamic Theory (McGraw-Hill, New York, 1941).

    Google Scholar 

  42. A. L. Aden and M. Kerker (1951). J. Appl. Phys. 22, 1242.

    Google Scholar 

  43. A. Güttler (1952). Ann. Phys. 11, 65.

    Google Scholar 

  44. R. Bhandari (1985). Appl. Opt. 24, 1960.

    Google Scholar 

  45. J. Sinzig and M. Quinten (1994). Appl. Phys. A 58, 157.

    Google Scholar 

  46. L. Kai and P. Massoli (1994). Appl. Opt. 33, 501.

    Google Scholar 

  47. O. R. Cruzan (1962). Q. Appl. Math. 20, 33.

    Google Scholar 

  48. B. U. Felderhof and R. B. Jones (1987). J. Math. Phys. 28, 836.

    Google Scholar 

  49. B. Jeffreys (1965). Geophys. J. Roy. Soc. 10, 141.

    Google Scholar 

  50. M. Quinten and U. Kreibig (1993). Appl. Opt. 32, 6173.

    Google Scholar 

  51. L. Tsang, J. A. Kong, and R. T. Shin, Theory of Microwave Remote Sensing (Wiley, New York, 1985).

    Google Scholar 

  52. R. Zsigmondy, Das kolloide Gold (Akad. Verlagsges., Leipzig, 1925).

    Google Scholar 

  53. N. D. Lang and W. Kohn (1971). Phys. Rev. B 1, 4555; Phys. Rev. B 3, 1215.

    Google Scholar 

  54. E. J. W. Verwey and J. T. G. Overbeek, Theory of the Stability of Lyophobic Colloids (Elsevier, Amsterdam, 1948).

    Google Scholar 

  55. G. Reuter, Messung der optischen Absorption von Metall-und Fulleren-Clustern mittels photothermischer Laserstrahlablenkung, Diploma work (RWTH Aachen, Aachen. 1994).

    Google Scholar 

  56. A. Rosencwaig and A. Gersho (1976). J. Appl. Phys. 47, 64.

    Google Scholar 

  57. A. C. Boccara, D. Fournier, and J. Badoz (1980). Appl. Phys. Lett. 36, 130.

    Google Scholar 

  58. W. B. Jackson, N. M. Amer, A. C. Boccara, and D. Fournier (1981). Apl. Opt. 20, 1333.

    Google Scholar 

  59. J. C. Murphy and L. C. Aamodt (1980). J. Appl. Phys. 51, 4580.

    Google Scholar 

  60. A. C. Tam (1986). Rev. Mod. Phys. 58, 381.

    Google Scholar 

  61. F. A. McDonald and G. C. Wetzel (1988). Phys. Acoust. 18, 167.

    Google Scholar 

  62. O. Stenzel, S. Wibrandt, A. Stendal, U. Beckers, K. Voigtsberger, and C. von Borczyskowski (1995). J. Phys. D 28, 2154.

    Google Scholar 

  63. O. Stenzel, A. Stendal, D. Drews, T. Werninghaus, M. Falke, D. R. T. Zahn, and C. von Borczyskowski (1997). Appl. Surf. Sci. 108, 71.

    Google Scholar 

  64. M. Quinten, O. Stenzel, A. Stendal, and C. von Borczyskowski (1997). J. Opt. 28, 245.

    Google Scholar 

  65. C. C. Leznoff and A. B. P. Lever (eds.), Phthalocyanines: Properties and Applications (VCH, New York, 1989).

    Google Scholar 

  66. B. N. J. Perrson (1993). Surf. Sci. 281, 153.

    Google Scholar 

  67. T. Kahlau, M. Quinten, and U. Kreibig (1996). Appl. Phys. A 62, 19.

    Google Scholar 

  68. Landolt-Börnstein, Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik, Part 8 (Springer, Berlin, 1962).

    Google Scholar 

  69. B. T. Draine and P. J. Flatau (1994). J. Opt. Soc. Am. A11, 1491.

    Google Scholar 

  70. B. Michel (1995). J. Opt. Soc. Am. 12, 2471.

    Google Scholar 

  71. G. W. Mulholland, C. F. Bohren, and K. A. Fuller (1994). Langmuir 10, 2533.

    Google Scholar 

  72. P. Fumagalli, C. Spaeth, U. Rüdiger, and R. J. Gambino (1995). IEEE Trans. Magn. 31, 3319.

    Google Scholar 

  73. B. Dusemund, A. Hoffmann, T. Salzmann, U. Kreibig, and G. Schmid (1991). Z. Phys. D 20, 305.

    Google Scholar 

  74. B. Labani, C. Girard, D. Courjon, and D. Van Labeke (1990). J. Opt. Soc. Am. B 7, 936.

    Google Scholar 

  75. C. Girard (1992). Appl. Opt. 31, 5380.

    Google Scholar 

  76. C. Girard and A. Dereux (1994). Phys. Rev. B 49, 11344.

    Google Scholar 

  77. L. Novotny (1995). J. Opt. Soc. Am. A 14, 105, and Refs. 2–8 therein.

    Google Scholar 

  78. M. Xiao (1997). J. Opt. Soc. Am. A 14, 2977.

    Google Scholar 

  79. M. Quinten (1998). Appl. Phys. B 67, 101.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quinten, M. Optical Effects Associated with Aggregates of Clusters. Journal of Cluster Science 10, 319–358 (1999). https://doi.org/10.1023/A:1021929730157

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021929730157

Navigation