Skip to main content
Log in

A new class of flexible energetic salts, part 2: The crystal structures of the cubane-1,4-diammonium dinitramide and cubane-1,2,4,7-tetraammonium dinitramide salts

  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

The crystal structures of cubane-1,4-diammonium dinitramide, 1, and cubane-1,2,4,7-tetraammonium dinitramide, 2, have been determined. 1 crystallizes in the space group P21/c with cell dimensions a = 6.018(2), b = 11.642(3), c = 9.754(3) Å, β = 107.24(2), while 2 crystallizes in the space group P21/c with cell dimensions a = 9.401(4), b = 9.603(3), c = 12.603(4) Å, β 111.08(3). In these structures the ammonium substituents are symmetrically attached with respect to the cubane skeleton and have neither low lying empty orbitals nor available lone pairs of electrons thus they have a minimal effect on the metrical parameters of the cubane skeleton. All C–C bond lengths are close to the overall average C–C bond length for all reported cubanes of 1.559 Å. The conformations adopted by the dinitramide ions in both structures are quite different, with the bend, twist, and torsion angles for the dinitramide ion in 1 being significantly larger than those found for the dinitramide ions in 2, due to the different types of hydrogen bonding found in the two structures. In 2, the conformation adopted by the adjacent ammonium ions allows two of the three protons from each ammonium cation to form hydrogen bonds in such a manner that they span either the syn or the anti oxygen atoms of a single dinitramide anion. The dinitramide anion is thus constrained by these interactions and is less free to twist and bend. These results provide further confirmation that the metrical parameters of both the cubane and dinitramide moieties are flexible and reflect their local environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eaton, P. E. Angew. Chem. Int. Ed. Engl. 1992, 31, 1421.

    Google Scholar 

  2. Bashir-Hashemi, A.; Iyer, S.; Alster, J.; Slagg, N. Chem. Ind. 1995, 14, 533.

    Google Scholar 

  3. Eaton, P. E.; Galoppine, E.; Gilardi, R. J. Am. Chem. Soc. 1994, 116, 7588.

    Google Scholar 

  4. Lex, J.; Ermer, O. Angew. Chem. Int. Ed. Engl. 1987, 26, 447.

    Google Scholar 

  5. Desiraju, G. R. Crystal Engineering of Organic Solids; Elsevier: Amsterdam, 1989.

    Google Scholar 

  6. Zaworotko, M. J. Chem Soc. Rev. 1994, 283.

  7. Reddy, D. S.; Craig, D. C.; Desiraju, G. R. J. Am. Chem. Soc. 1996, 118, 4090, and references therein.

    Google Scholar 

  8. Cotton, F. A.; Wilkinson, G. Advanced Inorganic Chemistry. 5th Ed.; Wiley: New York, 1988; pp 326–329. Developments in Inorganic Nitrogen Chemistry, Vol 2 Colburn, C. B.; Ed; Elsevier Scientific Publishing: Amsterdam, 1973.

    Google Scholar 

  9. Bottaro, J. C.; Schmitt, R. J.; Penwell, P. E.; Ross, D. S. U. S. Patent No. 5,254,324, issued October 19, 1993. International patent application No. WO91/19669, World Intellectual Property Organization, published Dec. 26, 1991.

  10. Bottaro, J. C.; Schmitt, R. J.; Penwell, P. E. U. S. Patent No 5,198,204, issued March 30, 1993. International patent application No WO 91/19670, World Intellectual Property Organization, published Dec. 26, 1991.

  11. Bottaro, J. C.; Schmitt, R. J.; Penwell, P. E. U. S. Patent No 5,316,749, issued March 31, 1994.

  12. Bottaro, J. C.; Penwell, P. E.; Bomberger, D. Field for U. S. Patent 1992. International patent application No WO 93/16002, World Intellectual Property Organization, published August 19, 1993.

  13. Zak, Z. P. Am. Inst. Aeron. Inc. 1993, 1755. (Russian authors claimed initial discovery of the ammonium salt in the early 1970s in highly classified work and have used ammonium dinitramide in rocket propulsion).

  14. Luk'yanov, O. A.; Gorelik, V. P.; Tartakovskii, V. A. Russ. Chem. Bull 1994, 43, 89.

    Google Scholar 

  15. Luk'yanov, O. A.; Konnova, Yu. V.; Klimova, T. A.; Tartakovskii, V. A. Russ. Chem. Bull. 1994, 43, 1200.

    Google Scholar 

  16. Luk'yanov, O. A.; Anikin, O. V.; Gorelik, V. P.; Tartakovskii, V. A. Russ. Chem. Bull. 1994, 43, 1457.

    Google Scholar 

  17. Shlyapochnikov, V. A.; Cherskaya, N. O.; Luk'yanov, O. A.; Gorelik, V. P.; Tartakovskii, V. A. Russ. Chem. Bull. 1994, 43, 1522.

    Google Scholar 

  18. Luk'yanov, O. A.; Shlykova, N. I.; Tartakovskii, V. A. Russ. Chem. Bull. 1994, 43, 1680.

    Google Scholar 

  19. Luk'yanov, O. A.; Agevnin, A. R.; Leichenko, A. A.; Seregina, N. M.; Tartakovskii, V. A. Russ. Chem. Bull. 1995, 44, 108.

    Google Scholar 

  20. Trammell, S.; Goodson, P. A.; Sullivan, B. P. Inorg. Chem. 1996, 35, 1421.

    PubMed  Google Scholar 

  21. Gilardi, R.; Flippen-Anderson, J.; George, C.; Butcher, R. J.; Bottaro, J.; Penwell, P. E.; Schmitt, R. J. J. Am. Chem. Soc. 1997, 119, 9411.

    Google Scholar 

  22. Martin, A; Pinkerton, A. A.; Gilardi, R. D.; Bottaro, J. C. Acta Crystallogr. 1997, B53, 504.

    Google Scholar 

  23. Salts of the dinitramide ion are indefinitely stable in the dark but decompose into nitrate salts on prolonged exposure to ultraviolet light.

  24. Borman, S. Chemical and Engineering News, January 17, 1994, p 18.

  25. Sheldrick, G. M. SHELXTL, Crystallographic System; Siemens Analytical Instrument Division: Madison, Wis, 1986.

    Google Scholar 

  26. Cromer, D. T.; Waber J. T. International Tables for X-Ray Crystallography, Vol. IV; The Kynoch Press: Birmingham, England, 1974.

    Google Scholar 

  27. Cromer, D. T. International Tables for X-Ray Crystallography, Vol. IV; The Kynoch Press: Birmingham, England, 1974.

    Google Scholar 

  28. Sheldrick, G. M.; Schneider, T. R.; Methods in Enz., 1997, in press. This is a full-matrix least-squares refinement package that uses all data and refines on F 2 rather than the traditional F.

  29. Ammon, H. L.; Choi, C. S.; Damvarapu, R. S.; Iyer, S.; Alster, J. Acta Crystallogr., 1990, C46, 295.

    Google Scholar 

  30. Butcher, R. J.; Bashir-Hashemi, A.; Gilardi, R. D. J. Chem. Crystallogr. 1995, 25, 661.

    Google Scholar 

  31. Eaton, P. E.; Xiong, Y.; Gilardi, R. J. Am. Chem. Soc. 1993, 115, 10195.

    Google Scholar 

  32. For structures 1 and 2 the cubane cations have inversion symmetry. The unique carbon atoms are labeled as C1, C2, C6, and C8 to facilitate comparisons of meterical parameters with those of other cubane moieties. Thus C1′, C2′, C6′, and C8′ corespond to C4, C7, C3, and C5 in the normal cubane labeling scheme.

  33. Butcher, R. J.; Bashir-Hashemi, A.; Gilardi, R. J. Chem. Crystallogr. 1997, 27, 99.

    Google Scholar 

  34. N-N and N-N values from International Tables for X-ray Crystallography, Volume C, Kluwer Academic Publishers: Dordrecht, 1992.

  35. Politzer, P.; Seminario, J. M.; Concha, M. C.; Redfern, P. C. J. Mol. Struct. (THEOCHEM) 1993, 287, 235.

    Google Scholar 

  36. Politzer, P.; Seminario, J. M. Chem. Phys. Let. 1993, 216, 348.

    Google Scholar 

  37. Michels, H. H.; Montgomery Jr., J. A. J. Phys. Chem. 1993, 97, 6602.

    Google Scholar 

  38. Mebel, A. M.; Lin, M. C.; Morokuma, K.; Melius, C. F. J. Phys. Chem. 1995, 99, 6842.

    Google Scholar 

  39. Leroy, G.; Sana, M.; Wilante, C.; Peeters, D.; Dogimont, C. J. Mol. Struct. (THEOCHEM) 1987, 153, 249.

    Google Scholar 

  40. Leroy, G.; Sana, M.; Wilante, C.; Peeters, D.; Bourasseau, S. J. Mol. Struct. (THEOCHEM) 1989, 187, 251.

    Google Scholar 

  41. Brinck, T.; Murray, J. S.; Politzer, P. J. Org. Chem. 1991, 56, 5012.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Butcher, R.J., Gilardi, R.D. A new class of flexible energetic salts, part 2: The crystal structures of the cubane-1,4-diammonium dinitramide and cubane-1,2,4,7-tetraammonium dinitramide salts. Journal of Chemical Crystallography 28, 95–104 (1998). https://doi.org/10.1023/A:1022433512219

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022433512219

Navigation