Skip to main content
Log in

Pathways, pathway tubes, pathway docking, and propagators in electron transfer proteins

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The simplest views of long-range electron transfer utilize flat one-dimensional barrier tunneling models, neglecting structural details of the protein medium. The pathway model of protein electron transfer reintroduces structure by distinguishing between covalent bonds, hydrogen bonds, and van der Waals contacts. These three kinds of interactions in a tunneling pathway each have distinctive decay factors associated with them. The distribution and arrangement of these bonded and nonbonded contacts in a folded protein varies tremendously between structures, adding a richness to the tunneling problem that is absent in simpler views. We review the pathway model and the predictions that it makes for protein electron transfer rates in small proteins, docked proteins, and the photosynthetic reactions center. We also review the formulation of the protein electron transfer problem as an effective two-level system. New multi-pathway approaches and improved electronic Hamiltonians are described briefly as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anglos, D., Bindra, V., and Kuki, A. (1994).J. Chem. Soc. Chem. Comm. 213–215.

  • Aquino, A. J. A., Beroza, P., Beratan, D. N., and Onuchic, J. N. (1995).Chem. Phys., in press.

  • Beratan, D. N., Betts, J. N., and Onuchic, J. N. (1992b).J. Phys. Chem. 96, 2852–2855.

    Google Scholar 

  • Beratan, D. N., Betts, J. N., and Onuchic, J. N. (1991).Science 252, 1285–1288.

    Google Scholar 

  • Beratan, D. N., Onuchic, J. N., and Hopfield, J. J. (1987).J. Chem. Phys. 86, 4488–4498.

    Google Scholar 

  • Beratan, D. N., Onuchic, J. N., Winkler, J. R., and Gray, H. B. (1992a).Science 258, 1740–1741.

    PubMed  Google Scholar 

  • Bertini, I., Gray, H. B., Lippard, S., and Valentine, J. (1994).Bioinorganic Chemistry, University Science Books, Mill Valley, CA.

    Google Scholar 

  • Betts, J. N., Beratan, D. N., and Onuchic, J. N. (1992).J. Am. Chem. Soc. 114, 4043–4046.

    Google Scholar 

  • Bolton, J. R., Mataga, N., and McLendon, G. (1991).Electron Transfer in Inorganic, Organic, and Biological Systems, Advances in Chemistry Series 228, ACS Press, Washington, DC.

    Google Scholar 

  • Broo, A., and Larsson, S. (1991).J. Phys. Chem. 95, 4925–4928.

    Google Scholar 

  • Chen, L., Durley, R., Mathews, F., and Davidson, V. (1994).Science 264, 86–90.

    PubMed  Google Scholar 

  • Chen, Z., Koh, M., Vandriessche, G., Vanbeeumen, J., Bartsch, R., Meyer, T., Cusanovich, M., and Matthews, F. (1994).Science 266, 430–432.

    PubMed  Google Scholar 

  • Closs, G., and Miller, J. R. (1988).Science 240, 440–447.

    Google Scholar 

  • Conrad, D. W., Zhang, H., Stewart, D. E., and Scott, R. A. (1992).J. Am. Chem. Soc. 114, 9909–9915.

    Google Scholar 

  • Curtiss, L. A., Naleway, C., and Miller, J. (1993).Chem. Phys. 176, 387–405.

    Google Scholar 

  • Day, M., and Rees, D. C. (1995). Private communication.

  • Deisenhofer, J., and Michel, H. (1989).Science 245, 1463–1473.

    Google Scholar 

  • de Vault, D. (1984).Quantum Mechanical Tunneling in Biological Systems, 2nd edition. Cambridge Press.

  • Farver, O., and Pecht, I. (1994).Biophys. Chem. 50, 203–216.

    PubMed  Google Scholar 

  • Feher, G., Allen, J., Okamura, M., and Rees, D. (1989).Nature 339, 111–116.

    Google Scholar 

  • Gruschus, J. M., and Kuki, A. (1993).J. Phys. Chem. 97, 5581–5593.

    Google Scholar 

  • Gunner, M. (1991).Curr. Topics Bioenerg. 16, 319–367.

    Google Scholar 

  • Hopfield, J. J. (1974).Proc. Natl. Acad. Sci. (USA) 71, 3640–3644.

    Google Scholar 

  • Hu, Y., and Mukamel, S. (1989).J. Chem. Phys. 91, 6973–6988;Chem. Phys. Lett. 160, 410–416.

    Google Scholar 

  • Jacobs, B. A., Mauk, M., Funk, W., MacGillivray, R., Mauk, A. G., and Gray, H. B. (1991).J. Am. Chem. Soc. 113, 4390–4394.

    Google Scholar 

  • Jordan. K. D., and Paddon-Row, M. N. (1992).Chem. Rev. 395–410.

  • Jortner, J. (1976).J. Chem. Phys. 64, 4860–4867.

    Google Scholar 

  • Karpishin, T. B., Grinstaff, M., Komar-Panicucci, S., McLendon, G., Gray, H. B. (1994).Structure 2, 415–422.

    PubMed  Google Scholar 

  • Kim, J., and Rees, D. C. (1994).Biochemistry 33, 389–397.

    PubMed  Google Scholar 

  • Kurnikov, I. V., and Beratan, D. N. (1995). In preparation.

  • Langen, R., Chang, I. J., Germanas, J. P., Richards, J. H., Winkler, J. R., and Gray, H. B. (1995).Science 268, 1733–1735.

    PubMed  Google Scholar 

  • Larsson, S. (1981).J. Am. Chem. Soc. 103, 4034–4040.

    Google Scholar 

  • Levich, V. G. (1965). InAdvances in Electrochemistry and Electrochemical Engineering (Delahay, P., and Tobias, C. W., eds.) Interscience. New York, Vol. 4, pp. 249–372.

    Google Scholar 

  • Lippard, S. J., and Berg, J. M. (1994).Principles of Bioinorganic Chemistry, University Science Books, Mill Valley, CA.

    Google Scholar 

  • Marcus, R. A. (1993).Angew. Chemie., Int. Ed. Engl. 32, 1111–1121.

    Google Scholar 

  • McLendon, G. (1990).Structure and Bonding 75, 159–174.

    Google Scholar 

  • Mikkelson, K. V., and Ratner, M. A. (1988).Chem. Rev. 87, 113–153.

    Google Scholar 

  • Moreira, I., Sun, J., Cho, M., Wishart, J., and Isied, S. (1994).J. Am. Chem. Soc. 116, 8396–8397.

    Google Scholar 

  • Moser, C. C., Keske, J. M., Warncke, K., Farid, R. S., and Dutton, P. L. (1992).Nature 355, 796–802.

    PubMed  Google Scholar 

  • Newton, M. D. (1991).Chem. Rev. 91, 767–792.

    Google Scholar 

  • Ogawa, M. Y., Wishart, J., Young, Z., Miller, J., and Isied, S. (1993).J. Phys. Chem. 97, 11456–11463.

    Google Scholar 

  • Onuchic, J. N., and Beratan, D. N. (1990).J. Chem. Phys. 92, 722–733.

    Google Scholar 

  • Onuchic, J. N., Beratan, D. N., and Hopfield, J. J. (1986).J. Phys. Chem. 90, 3707–3721.

    Google Scholar 

  • Onuchic, J. N., Beratan, D. N., Winkler, J. R., and Gray, H. B. (1992).Ann. Revs. Biophys. Biomol. Struct. 21, 349–377.

    Google Scholar 

  • Pelletier, H., and Kraut, J. (1992).Science 258, 1748–1755.

    PubMed  Google Scholar 

  • Regan, J. J., DiBilio, A. J., Langen, R., Skov, L. K., Winkler, J. R., Gray, H. B., and Onuchic, J. N. (1995). Chemistry and Biology, in press.

  • Regan, J. J., Risser, S. M., Beratan, D. N., and Onuchic, J. N. (1993).J. Phys. Chem. 97, 13083–13088.

    Google Scholar 

  • Shephard, M. J., Paddon-Row, M. N., and Jordan, K. D. (1993).Chem. Phys. 176, 289–304.

    Google Scholar 

  • Siddarth, P., and Marcus, R. A. (1993).J. Phys. Chem. 97, 13078–13082.

    Google Scholar 

  • Skourtis, S. S., Beratan, D. N., and Onuchic, J. N. (1993).Chem. Phys. 176, 501–520.

    Google Scholar 

  • Skourtis, S. S., Beratan, D. N., and Onuchic, J. N. (1995).Inorg. Chim. Acta, submitted.

  • Skourtis, S. S., and Mukamel, S. (1995).Chem. Phys., in press.

  • Skourtis, S. S., Regan, J. J., and Onuchic, J. N. (1994).J. Phys. Chem. 98, 3379–3388.

    Google Scholar 

  • Skourtis, S. S., and Onuchic, J. N. (1993).Chem. Phys. Lett. 209, 171–177.

    Google Scholar 

  • Stemp, E. D. A., and Hoffman, B. M. (1993).Biochemistry 32, 10848–10865.

    PubMed  Google Scholar 

  • Sutin, N., and Marcus, R. A. (1985).Biochim. Biophys. Acta 811, 265–322.

    Google Scholar 

  • Sykes, A. G. (1991). InElectron Transfer Reactions in Metalloproteins. Vol. 27 (Sigel, H., and Sigel, A., eds.). Marcel Dekker, New York, pp. 291–321.

    Google Scholar 

  • Szabo, A. (1989).Modern Quantum Chemistry, Revised First Edition. Macmillan, New York.

    Google Scholar 

  • Therien, M. J., Bowler, B. E., Selman, M. A., Gray. H. B., Chang, I. J., and Winkler, J. R. (1991). InElectron Transfer in Inorganic, Organic, and Biological Systems.Advances in Chemistry Series 228, ACS Press, Washington. DC, pp. 191–199.

    Google Scholar 

  • Therien, M. J., Chang, J., Raphael, A. L., Bowler, B. E., and Gray, H. B. (1991).Structure and Bonding 75, 109–129.

    Google Scholar 

  • Therien, M. J., Selman, M., Gray, H. B., Chang, I. J., and Winkler, J. R. (1990).J. Am. Chem. Soc. 112, 2420–2422.

    Google Scholar 

  • Turro, C., Chang, C., Leroi, G., Cukier, R., and Nocera, D. (1992).J. Am. Chem. Soc. 114, 4013–4015.

    Google Scholar 

  • Wasielewski, M. R. (1992).Chem. Rev. 92, 435–461.

    Google Scholar 

  • Winkler, J. R., and Gray, H. B. (1992).Chem. Rev. 92, 369–379.

    Google Scholar 

  • Wuttke, D. S., Bjerrum, M. J., Winkler, J. R., and Gray, H. B. (1992).Science 256, 1007–1009.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Curry, W.B., Grabe, M.D., Kurnikov, I.V. et al. Pathways, pathway tubes, pathway docking, and propagators in electron transfer proteins. J Bioenerg Biomembr 27, 285–293 (1995). https://doi.org/10.1007/BF02110098

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02110098

Key words

Navigation