Skip to main content
Log in

The TF1-ATPase and ATPase activities of assembled α3β3γ, α3β3γδ, and α3β3γε complexes are stimulated by low and inhibited by high concentrations of rhodamine 6G whereas the dye only inhibits the α3β3, and α3β3δ complexes

  • Original Articles
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The ATPase activity of the F1-ATPase from the thermophilic bacterium PS3 is stimulated at concentrations of rhodamine 6G up to about 10 µM where 70% stimulation is observed at 36°C. Half maximal stimulation is observed at about 3 µM dye. At rhodamine 6G concentrations greater than 10 µM, ATPase activity declines with 50% inhibition observed at about 75 µM dye. The ATPase activities of the α3β3γ and α3β3γδ complexes assembled from isolated subunits of TF1 expressed inE. coli deleted of theunc operon respond to increasing concentrations of rhodamine 6G nearly identically to the response of TF1. In contrast, the ATPase activities of the α3β3 and α3β3δ complexes are only inhibited by rhodamine 6G with 50% inhibition observed, respectively, at 35 and 75 µM dye at 36°C. The ATPase activity of TF1 is stimulated up to 4-fold by the neutral detergent, LDAO. In the presence of stimulating concentrations of LDAO, the ATPase activity of TF1 is no longer stimulated by rhodamine 6G, but rather, it is inhibited with 50% inhibition observed at about 30 µM dye at 30°C. One interpretation of these results is that binding of rhodamine 6G to a high-affinity site on TF1 stimulates ATPase activity and unmasks a low-affinity, inhibitory site for the dye which is also exposed by LDAO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aggeler, R., and Capaldi, R. A. (1992).J. Biol. Chem. 267, 21355–21359.

    Google Scholar 

  • Aggeler, R., Chicas-Cruz, K., Cai, S-X., Keana, J. F. W., and Capaldi, R. A. (1992).Biochemistry 31, 2956–2961.

    Google Scholar 

  • Bullough, D. A., Kwan, M., Laikind, P. K., Yoshida, M., and Allison, W. S. (1985).Arch. Biochem. Biophys. 236, 567–575.

    Google Scholar 

  • Bullough, D. A., Ceccarelli, E. A., Roise, D., and Allison, W. S. (1989a).Biochim. Biophys. Acta 975, 377–383.

    Google Scholar 

  • Bullough, D. A., Ceccarelli, E. A., Verburg, J. G., and Allison, W. S. (1989b).J. Biol. Chem. 264, 9155–9163.9.

    Google Scholar 

  • Chazotte, B., Vanderkooi, G., and Chignell, D. (1982).Biochim. Biophys. Acta 680, 310–316.

    Google Scholar 

  • Dallmann, G. H., Flynn, T. G., and Dunn, S. D. (1992).J. Biol. Chem. 267, 18953–18960.

    Google Scholar 

  • Dunn, S. D., Tozer, R. G., and Zadorozny, V. D. (1990).Biochemistry 29, 4335–4340.

    Google Scholar 

  • Emaus, R. K., Gruenwald, R., and Lemasters, J. J. (1986).Biochim. Biophys. Acta 850, 436–448.

    Google Scholar 

  • Kagawa, Y., Ohta, S., and Otawara-Hamamoto, Y. (1989).FEBS Lett. 249, 67–69.

    Google Scholar 

  • Kagawa, Y., Ohta, S., Harada, M., Kihara, H., Ito, Y., and Sato, M. (1992).J. Bioenerg. Biomembr. 24, 441–445.

    Google Scholar 

  • Klionsky, D. J., Brusilow, W. S. A., and Simoni, R. D. (1984).J. Bacteriol. 160, 1055–1060.

    Google Scholar 

  • Laikind, P. K., Goldenberg, T. M., and Allison, W. S. (1982).Biochem. Biophys. Res. Commun. 109, 423–427.

    Google Scholar 

  • Lötscher, H-R., deJong, C., and Capladi, R. A. (1984).Biochemistry 23, 4140–4143.

    Google Scholar 

  • Miwa, K., and Yoshida, M. (1989).Proc. Natl. Acad. Sci. USA 86, 6484–6487.

    Google Scholar 

  • Ohta, S., Yohda, M., Ishuzuka, M., Hirata, H., Hamamoto, T., Otawara-Hamamoto, Y., Matsuda, K., and Kagawa, Y. (1988).Biochim. Biophys. Acta 933, 141–155.

    Google Scholar 

  • Palatini, P. (1982).Mol. Pharmacol. 21, 415–421.

    Google Scholar 

  • Penefsky, H. S., and Cross, R. L. (1991).Adv. Enzymol. 64, 173–214.

    Google Scholar 

  • Senior, A. E. (1988).Physiol. Rev. 68, 177–231.

    Google Scholar 

  • Wieker, H-J., Kuschmitz, D., and Hess, B. (1987).Biochim. Biophys. Acta 892, 108–117.

    Google Scholar 

  • Yokoyama, K., Hisabori, T., and Yoshida, M. (1989).J. Biol. Chem. 264, 21837–21841.

    Google Scholar 

  • Yoshida, M., and Allison, W. S. (1986).J. Biol. Chem. 261, 5714–5721.

    Google Scholar 

  • Yoshida, M., Sone, N., Hirata, H., and Kagawa, Y. (1975).J. Biol. Chem. 250, 7910–7916.

    Google Scholar 

  • Yoshida, M., Sone, N., Hirata, H., and Kagawa, Y. (1977).J. Biol. Chem. 252, 3480–3485.

    Google Scholar 

  • Zhuo, S., and Allison, W. S. (1988).Biochem. Biophys. Res. Commun. 152, 968–972.

    Google Scholar 

  • Zhuo, S., Paik, S. R., Register, J. A., and Allison, W. S. (1993).Biochemistry 32, 2219–2227.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paik, S.R., Yokoyama, K., Yoshida, M. et al. The TF1-ATPase and ATPase activities of assembled α3β3γ, α3β3γδ, and α3β3γε complexes are stimulated by low and inhibited by high concentrations of rhodamine 6G whereas the dye only inhibits the α3β3, and α3β3δ complexes. J Bioenerg Biomembr 25, 679–684 (1993). https://doi.org/10.1007/BF00770254

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00770254

Key words

Navigation