Skip to main content
Log in

The vacuolar ATPase ofNeurospora crassa

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The filamentous fungusNeurospora crassa has many small vacuoles which, like mammalian lysosomes, contain hydrolytic enzymes. They also store large amounts of phosphate and basic amino acids. To generate an acidic interior and to drive the transport of small molecules, the vacuolar membranes are densely studded with a proton-pumping ATPase. The vacuolar ATPase is a large enzyme, composed of 8–10 subunits. These subunits are arranged into two sectors, a complex of peripheral subunits called V1 and an integral membrane complex called V0. Genes encoding three of the subunits have been isolated.vma-1 andvma-2 encode polypeptides homologous to the α and β subunits of F-type ATPases. These subunits appear to contain the sites of ATP binding and hydrolysis.vma-3 encodes a highly hydrophobic polypeptide homologous to the proteolipid subunit of vacuolar ATPases from other organisms. This subunit may form part of the proton-containing pathway through the membrane. We have examined the structures of the genes and attempted to inactivate them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adachi, I., Arai, H., Pimental, R., and Forgac, M. (1990).J. Biol. Chem. 265, 960–966.

    Google Scholar 

  • Ammerer, G., Hunter, C. P., Rothman, J. H., Saari, G. C., Valls, L. A., and Stevens, T. H. (1986).Mol. Cell. Biol. 6, 2490–2499.

    Google Scholar 

  • Arai, H., Terres, G., Pink, S., and Forgac, M. (1988).J. Biol. Chem. 263, 8796–8892.

    Google Scholar 

  • Arai, H., Pink, S., and Forgac, M. (1989).Biochemistry 28, 3075–3082.

    Google Scholar 

  • Banta, L. M., Robinson, J. S., Klionsky, D. J., and Emr, S. D. (1988).J. Cell Biol. 107, 1369–1383.

    Google Scholar 

  • Bowman, B. J., and Bowman, E. J. (1986).J. Membr. Biol. 94, 83–97.

    Google Scholar 

  • Bowman, B. J., and Davis, R. H. (1977a).J. Bacteriol. 130, 274–284.

    Google Scholar 

  • Bowman, B. J., and Davis, R. H. (1977b).J. Bacteriol. 130, 285–291.

    Google Scholar 

  • Bowman, B. J., and Slayman, C. W. (1977).J. Biol. Chem. 252, 3357–3363.

    Google Scholar 

  • Bowman, B. J., Allen, R., Wechser, M. A., and Bowman, E. J. (1988).J. Biol. Chem. 263, 14002–14007.

    Google Scholar 

  • Bowman, B. J., Dschida, W. J., Harris, T., and Bowman, E. J. (1989).J. Biol. Chem. 264, 15606–15612.

    Google Scholar 

  • Bowman, E. J. (1983).J. Biol. Chem. 258, 15238–15244.

    Google Scholar 

  • Bowman, E. J., and Bowman, B. J. (1982).J. Bacteriol. 151, 1326–1337.

    Google Scholar 

  • Bowman, E. J., and Bowman, B. J. (1988).Methods Enzymol. 157, 562–573.

    Google Scholar 

  • Bowman, E. J., and Knock, T. E. (1992).Gene 114, 157–163.

    Google Scholar 

  • Bowman, E. J., Mandala, S., Taiz, L., and Bowman, B. J. (1986).Proc. Natl. Acad. Sci. USA 83, 48–52.

    Google Scholar 

  • Bowman, E. J., Tenney, K., and Bowman, B. J. (1988a).J. Biol. Chem. 263, 13994–14001.

    Google Scholar 

  • Bowman, E. J., Siebers, A., and Altendorf, K. (1988b).Proc. Natl. Acad. Sci. USA 85, 7972–7976.

    Google Scholar 

  • Cornelius, G., and Nakashima, H. (1987).J. Gen. Microbiol. 133, 2341–2347.

    Google Scholar 

  • Cramer, C. L., Vaughn, L. E., and Davis, R. H. (1980).J. Bacteriol. 142, 945–952.

    Google Scholar 

  • Cramer, C. L., Ristow, J. L., Paulus, T. J., and Davis, R. H. (1983).Anal. Biochem. 128, 384–392.

    Google Scholar 

  • Denda, K., Konishi, J., Oshima, T., Date, T., and Yoshida, M. (1988).J. Biol. Chem. 263, 6012–6015.

    Google Scholar 

  • Forgac, M. (1989).Physiol. Rev. 69, 765–795.

    Google Scholar 

  • Foury, F. (1990).J. Biol. Chem. 265, 18554–18560.

    Google Scholar 

  • Futai, M., Noumi, T., and Maeda, M. (1989).Annu. Rev. Biochem. 58, 111–136.

    Google Scholar 

  • Gogarten, J. P., Kibak, H., Dittrich, P., Taiz, L., Bowman, E. J., Bowman, B. J., Manolson, M. F., Poole, R. J., Date, T., Oshima, T., Konishi, J., Denda, K., and Yoshida, M. (1989).Proc. Natl. Acad. Sci. USA 86, 6661–6665.

    Google Scholar 

  • Gresser, M. J., Myers, J. A., and Boyer, P. D. (1982).J. Biol. Chem. 257, 12030–12038.

    Google Scholar 

  • Grubmeyer, C., and Penefsky, H. S. (1981).J. Biol. Chem. 256, 3718–3727.

    Google Scholar 

  • Gurr, S. J., Unkles, S. E., and Kinghorn, J. R. (1987). InGene Structure in Eukaryotic Microbes (Kinghorn, J. R., ed.), IRL Press, Oxford, pp. 93–139.

    Google Scholar 

  • Hirsch, S., Strauss, A., Masood, K., Lee, S., Sukhatme, V., and Gluck, S. (1988).Proc. Natl. Acad. Sci. USA 85, 3004–3008.

    Google Scholar 

  • Inatomi, K.-I., Eya, S., Maeda, M., and Futai, M. (1989).J. Biol. Chem. 264, 10954–10959.

    Google Scholar 

  • Kasho, V. N., and Boyer, P. D. (1989).Proc. Natl. Acad. Sci. USA 86, 8708–8711.

    Google Scholar 

  • Klionsky, D. J., Herman, P. K., and Emr, S. D. (1990).Microbiol. Rev. 54, 266–292.

    Google Scholar 

  • Legerton, T. L., Kanamori, K., Weiss, R. L., and Roberts, J. D. (1983).Biochemistry 22, 899–903.

    Google Scholar 

  • Mainzer, S. E., and Slayman, C. W. (1978).J. Bacteriol. 133, 584–592.

    Google Scholar 

  • Mandel, M., Moriyama, Y., Hulmes, J. D., Pan, Y.-C. E., Nelson, H., and Nelson, N. (1988).Proc. Natl. Acad. Sci. USA 85, 5521–5524.

    Google Scholar 

  • Manolson, M. F., Ouellette, B. F. F., Filion, M., and Poole, R. J. (1988).J. Biol. Chem. 263, 17987–17994.

    Google Scholar 

  • Nelson, H., and Nelson, N. (1989).FEBS Lett. 247, 147–153.

    Google Scholar 

  • Nelson, H., and Nelson, N. (1990).Proc. Natl. Acad. Sci. USA 87, 3503–3507.

    Google Scholar 

  • Njus, D., Knoth, J., and Zallakian, M. (1981).Curr. Top. Bioenerg. 11, 107–147.

    Google Scholar 

  • Ohya, Y., Umemoto, N., Tanida, I., Ohta, A., Iida, H., and Anraku, A. (1991).J. Biol. Chem. 266, 13971–13977.

    Google Scholar 

  • Orbach, M. J., Porro, E. B., and Yanofsky, C. (1986).Mol. Cell. Biol. 6, 2452–2461.

    Google Scholar 

  • Perin, M. S., Fried, V. A., Stone, D. K., Xie, X.-S., and Sudhof, T. C. (1991).J. Biol. Chem. 266, 3877–3881.

    Google Scholar 

  • Rea, P. A., Griffith, C. J., Manolson, M. F., and Sanders, D. (1987).Biochim. Biophys. Acta 904, 1–12.

    Google Scholar 

  • Sebald, W., and Wild, G. (1979).Methods Enzymol. 55, 344–351.

    Google Scholar 

  • Selker, E. U., Cambareri, E. B., Jensen, B. C., and Haack, K. R. (1987).Cell 51, 741–752.

    Google Scholar 

  • Senior, A. E. (1988).Physiol. Rev. 68, 177–231.

    Google Scholar 

  • Sista, H. (1991). Ph.D. Thesis, University of California, Santa Cruz, California.

    Google Scholar 

  • Umemoto, N., Yoshihisa, T., Hirata, R., and Anraku, Y. (1990).J. Biol. Chem. 265, 18447–18453.

    Google Scholar 

  • Vaughn, L. E., and Davis, R. H. (1981).Mol. Cell. Biol. 1, 797–806.

    Google Scholar 

  • Vogel, P. D., and Cross, R. L. (1991).J. Biol. Chem. 266, 6101–6105.

    Google Scholar 

  • Walker, J. E., Saraste, M., Runswick, M. J., and Gay, N. J. (1982).EMBO J. 1, 945–951.

    Google Scholar 

  • Yoshimori, T., Yamamoto, A., Moriyama, Y., Futai, M., and Tashiro, Y. (1991).J. Biol. Chem. 266, 17707–17712.

    Google Scholar 

  • Zerez, C. R., Weiss, R. L., Franklin, C., and Bowman, B. J. (1986).J. Biol. Chem. 261, 8877–8882.

    Google Scholar 

  • Zimniak, L., Dittrich, P., Gogarten, J. P., Kibak, H., and Taiz, L. (1988).J. Biol. Chem. 263, 9102–9112.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bowman, B.J., Vázquez-Laslop, N. & Bowman, E.J. The vacuolar ATPase ofNeurospora crassa . J Bioenerg Biomembr 24, 361–370 (1992). https://doi.org/10.1007/BF00762529

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00762529

Key words

Navigation