Skip to main content
Log in

Isochoric specific heat of sulfur hexafluoride at the critical point: Laboratory results and outline of a spacelab experiment for the d1-mission in 1985

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The specific heat at constant volume cv shows a weak singularity at the critical point. Renormalization group techniques have been applied, predicting a universal critical behavior which has to be experimentally confirmed for different systems. In this paper an experiment is presented to measure the specific heat of SF6 along the critical isochore (ρc=0.737 g·cm−3), applying a continuous heating method. The results cover a temperature span of −1.5×10−2< τ<1.70×10−2 [τ=(TT c)/T c] and were strongly affected by gravity effects that emerge in the sample of 1-mm hydrostatic height near the critical point. Using regression analysis, data were fitted with functions of the form c v/R=A × ¦τ¦−α + B for the one-phase state and c v/R=A″ × ¦τ¦−α″ + B″ for the twophase state. Within their error bounds the critical values (α=α″=0.098, A″/A=1.83) represent the measurements for the temperature span 3.5×10−5< ¦τ¦<2.0×10 −3, in good agreement with theoretical predictions. In order to exclude density profiles in the specimen, which are unavoidable in terrestrial experiments due to the high compressibility of fluids at the critical point and the gravity force, a space-qualified scanning ratio calorimeter has been constructed, which will permit long-term cv measurements under microgravity (μ-g) conditions. The experiment will be part of the German Spacelab mission in October 1985. The significant features of the apparatus are briefly sketched.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. A. Baker, Jr., B. G. Nickel, and P. I. Meiron, Phys. Rev. B17:1365 (1976).

    Google Scholar 

  2. C. Bervillier, Phys. Rev. B14:4964 (1976).

    Google Scholar 

  3. E. Brézin, J. G. Le Guillou, and J. Zinn-Justin, Phys. Rev. D8:2418 (1973).

    Google Scholar 

  4. P. C. Hohenberg and M. Barmatz, Phys. Rev. A6:289 (1972).

    Google Scholar 

  5. M. J. Buckingham, C. Edwards, and J. A. Lipa, Rev. Sci. Instrum. 44:1167 (1973).

    Google Scholar 

  6. U. Würz and M. Grubic, J. Phys. E Sci. Instrum. 13:525 (1980).

    Google Scholar 

  7. D. Balzarni and P. Palffy, Can. J. Phys. 52:2007 (1974).

    Google Scholar 

  8. A. Junod, J. Phys. E Sci. Instrum. 12:945 (1979).

    Google Scholar 

  9. N. T. Larsen, Rev. Sci. Instrum. 39:1 (1968).

    Google Scholar 

  10. N. Grubic and U. Würz, J. Phys. E Sci. Instrum. 11:693 (1978).

    Google Scholar 

  11. J. A. Lipa, C. Edwards, and M. J. Buckingham, Phys. Rev. A15:778 (1977).

    Google Scholar 

  12. S. D. Wood, B. W. Magnum, J. J. Filliben, and S. B. Tillet, J. Res. NBS 3:247 (1978).

    Google Scholar 

  13. D. Dahl and M. R. Moldover, Phys. Rev. A6:1915 (1972).

    Google Scholar 

  14. G. R. Brown and H. Meyer, Phys. Rev. A6:364 (1972).

    Google Scholar 

  15. J. Straub, Proc. 3rd Int. Conf. Chem. Thermodyn. 2:40 (1972).

    Google Scholar 

  16. H. L. Swinney and H. Z. Cummins, Phys. Rev. 171:152 (1968).

    Google Scholar 

  17. E. Reile, P. Jany, and J. Straub, Wärme-Stoffübertragung 18:99 (1984).

    Google Scholar 

  18. E. Reile, Dissertation (Technische Universität, München, 1981).

    Google Scholar 

  19. W. Rathjen, Dissertation (Technische Universität, München, 1978).

    Google Scholar 

  20. H. P. Clegg, J. S. Rowlinson, and J. R. Sutton, Trans. R. Faraday Soc. 51:1327 (1951).

    Google Scholar 

  21. A. H. Wentdorff, Jr., J. Chem. Phys. 24:607 (1956).

    Google Scholar 

  22. M. Barmatz, P. C. Hohenberg, and A. Kornblit, Phys. Rev. B12:1947 (1975).

    Google Scholar 

  23. E. Bloemen, J. Thoen, and W. Van Dael, J. Chem. Phys. 73:4628 (1980).

    Google Scholar 

  24. J. M. H. Levelt-Sengers, W. L. Greer, and J. V. Sengers, J. Phys. Chem. Ref. Data 5:1 (1976).

    Google Scholar 

  25. K. Nitsche, R. Lange, and J. Straub, Proceedings of the 5th Symposium on Material Science under μ-g. ESA SP 222:335 (1984).

    Google Scholar 

  26. W. J. Camp et al., Phys. Rev. B14:3990 (1978).

    Google Scholar 

  27. A. Aharony and P. C. Hohenberg, Phys. Rev. B13:3081 (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Straub, J., Lange, R., Nitsche, K. et al. Isochoric specific heat of sulfur hexafluoride at the critical point: Laboratory results and outline of a spacelab experiment for the d1-mission in 1985. Int J Thermophys 7, 343–356 (1986). https://doi.org/10.1007/BF00500160

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00500160

Key words

Navigation