Skip to main content
Log in

Equation of State and Thermodynamic Properties of Pure D2O and D2O + H2O Mixtures in and Beyond the Critical Region

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

A parametric crossover model is adapted to represent the thermodynamic properties of pure D2O in the extended critical region. The crossover equation of state for D2O incorporates scaling laws asymptotically close to the critical point and is transformed into a regular classical expansion far from the critical point. An isomorphic generalization of the law of corresponding states is applied to the prediction of thermodynamic properties and the phase behavior of D2O + H2O mixtures over a wide region around the locus of vapor-liquid critical points. A comparison is made with experimental data for pure D2O and for the D2O + H2O mixture. The equation of state yields a good representation of thermodynamic property data in the range of temperatures 0.8T c(x)≤T≤1.5T c(x) and densities 0.35ρc(x)≤ρ≤1.65ρc(x).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. L. D. Landau and E. M. Lifshitz, Statistical Physics, 3rd ed. (Pergamon, New York, 1980).

    Google Scholar 

  2. A. Z. Patashinskii and V. L. Pokrovskii, fluctuation Theory of Phase Transitions (Pergamon, New York, 1979).

    Google Scholar 

  3. J. F. Nicoll, Phys. Rev. A 24:2203 (1981).

    Google Scholar 

  4. J. F. Nicoll and J. K. Bhattacharjee, Phys. Rev. B 23:389 (1981).

    Google Scholar 

  5. J. F. Nicoll and P. C. Albright, Phys. Rev. B 31:4576 (1985).

    Google Scholar 

  6. J. F. Nicoll and P. C. Albright, Phys Rev. B 34:1991 (1986).

    Google Scholar 

  7. J. V. Sengers and J. M. H. Levelt Sengers, Ann. Rev. Phys. Chem. 37:189 (1986).

    Google Scholar 

  8. M. A. Anisinzov and S. B. Kiselev, Sov. Tech. Rev. B Therm. Phys. 6:1 (1992).

    Google Scholar 

  9. Z. Y. Chen, P. C. Albright, and J. V. Sengers, Phys. Rev. A 41:3161 (1990).

    Google Scholar 

  10. Z. Y. Chen, A. Abbaci, S. Tang, and J. V. Sengers, Phys. Rev. A 42:4470 (1990).

    Google Scholar 

  11. S. Tang, J. V. Sengers, and Z. Y. Chen, Physica A 179:344 (1991).

    Google Scholar 

  12. M. A. Anisimov, S. B. Kiselev, J. V. Sengers, and S. Tang, Physica A 188:487 (1992).

    Google Scholar 

  13. F. W. Balfour, J. V. Sengers, M. R. Moldover, and J. M. H. Levelt Sengers, Phys. Lett. A 65: 223 (1978).

    Google Scholar 

  14. J. V. Sengers and J. M. H. Levelt Sengers, Int. J. Thermophys. 5:195 (1984).

    Google Scholar 

  15. S. B. Kiselev, High. Temp. 24:375 (1985).

    Google Scholar 

  16. Kh. S. Abdulkadirova, S. B. Kiselev, I. G. Kostyukova, and L. V. Fedyunina, J. Eng. Phys. 61:902 (1991).

    Google Scholar 

  17. M. Ley-Koo and M. S. Green, Phys. Rev. A 16:2483 (1977).

    Google Scholar 

  18. V. A. Pokrovskii, Pis'ma Zh. Eksp. Teor. Fiz. (Sov. Phys. JETP Lett.) 17:219 (1973).

    Google Scholar 

  19. R. B. Griffiths and J. C. Wheeler, Phys. Rev. A 2:1047 (1970).

    Google Scholar 

  20. J. F. Nicoll and R. K. P. Zia, Phys. Rev. B 23:6157 (1981).

    Google Scholar 

  21. J. Luettmer-Strathmann, S. Tang, and J. V. Sengers, J. Chem. Phys. 97:2705 (1992).

    Google Scholar 

  22. G. X. Jin, S. Tang, and J. V. Sengers, Phys. Rev. E 47:388 (1993).

    Google Scholar 

  23. A. A. Povodyrev, G. X. Jin, S. B. Kiselev, and J. V. Sengers, Int. J. Thermophys. 17:909 (1996).

    Google Scholar 

  24. S. B. Kiselev, High. Temp. 28:42 (1990).

    Google Scholar 

  25. S. B. Kiselev, I. G. Kostyukova, and A. A. Povodyrev, Int. J. Thermophys. 12:877 (1991).

    Google Scholar 

  26. S. B. Kiselev and J. V. Sengers, Int. J. Thermophys. 14:1 (1993).

    Google Scholar 

  27. S. B. Kiselev, Fluid Phase Equil. 128:1 (1997).

    Google Scholar 

  28. C. Bagnuls and C. Bervillier, Phys. Rev. B 32:7209 (1985).

    Google Scholar 

  29. C. Bagnuls and C. Bervillier, Phys. Rev. B 35:3585 (1987).

    Google Scholar 

  30. S. B. Kiselev and J. C. Rainwater, J. Chem. Phys. 109:643 (1998).

    Google Scholar 

  31. M. Y. Belyakov, S. B. Kiselev, and J. C. Rainwater, J. Chem. Phys. 107:3085 (1997).

    Google Scholar 

  32. F. G. Wegner, Phys. Rev. B 5:4529 (1972).

    Google Scholar 

  33. W. F. Saam, Phys. Rev. A 2:1461 (1970).

    Google Scholar 

  34. M. A. Anisimov, A. V. Voronel, and E. E. Gorodetskii, Sov. Phys. JETP 33:605 (1971).

    Google Scholar 

  35. M. E. Fisher, in Critical Phenomena, Vol. 186, Lecture Notes in Physics, F. J. W. Hahne, ed. (Springer-Verlag, Berlin, 1982), p. 1.

    Google Scholar 

  36. S. B. Kiselev, High. Temp. 26:337 (1988).

    Google Scholar 

  37. S. B. Kiselev and A. A. Povodyrev, Fluid Phase Equil. 79:33 (1992).

    Google Scholar 

  38. S. B. Kiselev and V. D. Kulikov, Int. J. Thermophys. 18:1143 (1997).

    Google Scholar 

  39. S. S. Leung and R. B. Griffiths, Phys. Rev. A 8:2670 (1973).

    Google Scholar 

  40. S. B. Kiselev and J. C. Rainwater, Fluid Phase Equil. 141:129 (1997).

    Google Scholar 

  41. S. B. Kiselev and M. L. Huber, Int. J. Refrig. 21:64 (1998).

    Google Scholar 

  42. S. B. Kiselev, J. C. Rainwater, and M. L. Huber, Fluid Phase Equil. 150–151:469 (1998).

    Google Scholar 

  43. J. M. H. Levelt Sengers, J. Straub, K. Watanabe, and P. G. Hill, J. Phys. Chem. Ref. Data 14:193 (1985).

    Google Scholar 

  44. C.-T. Liu and W. T. Lindsay, J. Chem. Eng. Data 15:510 (1970).

    Google Scholar 

  45. S. L. Rivkin and T. S. Akhundov, Teploenergetika 9:62 (1962).

    Google Scholar 

  46. S. L. Rivkin and T. S. Akhundov, Atomnaya Energiya 14:581 (1963).

    Google Scholar 

  47. N. V. Tsederberg, A. A. Aleksandrov, T. S. Khasanshin, and D. K. Larkin, Teploenergetika 20:17 (1973).

    Google Scholar 

  48. B. Kamgar-Parsi, J. M. H. Levelt Sengers, and J. V. Sengers, J. Phys. Chem. Ref. Data 12:513 (1983).

    Google Scholar 

  49. Kh. I. Amirkhanov, G. B. Stepanov, B. A. Mursalov, and O. A. Bui, Teploenergetika 22:68 (1973).

    Google Scholar 

  50. B. A. Mursalov, Ph.D. thesis (AZNEFTEChIM, Baku, Azerbaijan, 1973).

  51. S. L. Rivkin and B. N. Egorov, Teploenergetika 9:60 (1962).

    Google Scholar 

  52. S. L. Rivkin and B. N. Egorov, Teploenergetika 10:75 (1963).

    Google Scholar 

  53. S. B. Kiselev and D. G. Friend, Fluid Phase Equil. 155:33 (1999).

    Google Scholar 

  54. W. L. Marshall and J. M. Simonson, J. Chem. Thermodyn. 23:613 (1991).

    Google Scholar 

  55. S. B. Kiselev, M. Y. Belyakov, and J. C. Rainwater, Fluid Phase Equil. 150–151:439 (1998).

    Google Scholar 

  56. J. M. Simonson, J. Chem. Thermodyn. 22:739 (1990).

    Google Scholar 

  57. K. Zieborak, Z. Phys. Chem. 231:248 (1966).

    Google Scholar 

  58. S. B. Kiselev and D. G. Friend, Fluid Phase Equil. (in press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiselev, S.B., Abdulagatov, I.M. & Harvey, A.H. Equation of State and Thermodynamic Properties of Pure D2O and D2O + H2O Mixtures in and Beyond the Critical Region. International Journal of Thermophysics 20, 563–588 (1999). https://doi.org/10.1023/A:1022609205399

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022609205399

Navigation