Skip to main content
Log in

Transport Properties of Petroleum Fractions

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

A corresponding-states model for the transport properties of petroleum fractions is presented. The model requires only the API specific gravity and the mean average boiling point as input parameters. The extended correspanding-states model uses propane as a reference fluid, and new generalized shape factor expressions that are functions of the acentric factor and the reduced temperature are presented. Also presented are new correlating functions for the viscosity and thermal conductivity of the reference fluid that can be extrapolated well below the freezing point of propane. The performance of the model is demonstrated by comparing with experimental data for viscosity and thermal conductivity of petroleum fractions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. F. Ely and H. J. M. Hanley, Ind. Eng. Chem. Fundam. 20:323 (1981).

    Google Scholar 

  2. J. F. Ely and H. J. M. Hanley, Ind. Eng. Chem. Fundam. 22:90 (1983).

    Google Scholar 

  3. M. L. Huber and H. J. M. Hanley, Transport Properties of Fluids: Their Correlation, Prediction and Estimation, IUPAC, J. Millat, J. H. Dymond, and C. A. Nieto de Castro, eds. (Cambridge University Press, Cambridge, 1996), Chap. 12.

    Google Scholar 

  4. M. E. Baltatu, R. A. Chong, and M. L. Huber, Int. J. Thermophys. 17:213 (1996).

    Google Scholar 

  5. M. E. Baltatu, R. A. Chong, and M. L. Huber, Proc. 4th Asian Thermophys. Prop. Conf., Tokyo, Japan (1995), p. 531.

  6. M. L. Huber and J. F. Ely, Fluid Phase Equil. 80:239 (1992).

    Google Scholar 

  7. M. L. Huber, D. G. Friend, and J. F. Ely, Fluid Phase Equil. 80:249 (1992).

    Google Scholar 

  8. J. F. Ely, Adv. Cryo. Eng. 35:1511 (1990).

    Google Scholar 

  9. J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1954).

    Google Scholar 

  10. B. A. Younglove and J. F. Ely, J. Phys. Chem. Ref. Data 16:577 (1987).

    Google Scholar 

  11. J. W. Leach, P. S. Chappelear, and T. W. Leland, AIChE J. 14:568 (1968).

    Google Scholar 

  12. J. F. Ely and J. W. Magee, Proc. 68th GPA Ann. Conv., (Gas Processors Association, Tulsa, OK, 1989), pp. 89-99.

    Google Scholar 

  13. M. L. Huber and J. F. Ely, Int. J. Refrig. 17:18 (1994).

    Google Scholar 

  14. J. B. Maxwell, Data Book on Hydrocarbons (Van Nostrand, Princeton, NJ, 1950).

    Google Scholar 

  15. M. R. Riazi, Ph.D. thesis, (Department of Chernical Engineering, Pennsylvania State University, University Park, 1979).

  16. API Technical Data Book-Petroleum Refining, 4th ed., American Petroleum Institute Publication 999 (1988).

  17. B. I. Lee and M. G. Kesler, Hydroc. Proc. 59:163 (1980); Erratum: Hydroc. Proc. 59:91 (1980).

    Google Scholar 

  18. E. Vogel and C. Küchenmeister, High Temp. High Press. 29:397 (1997).

    Google Scholar 

  19. R. C. Prasad, G. Wang, and J. E. S. Venart, Int. J. Thermophys. 10:1013 (1989).

    Google Scholar 

  20. H. M. Roder and C. A. Nieto de Castro, J. Chem. Eng. Data 27:12 (1982).

    Google Scholar 

  21. L. T. Carmichael, J. Jacobs, and B. H. Sage, J. Chem. Eng. Data 13:40 (1968).

    Google Scholar 

  22. D. E. Leng and E. W. Comings, Ind. Eng. Chem. 49:2042 (1957).

    Google Scholar 

  23. N. I. Ryabtsev and V. A. Kazaryan, Gazov. Prom. 14:46 (1969).

    Google Scholar 

  24. V. P. Brykov, G. K. Mukhamedzyanov, and A. G. Usmanov, Inz. Fiz. Zh. 18:82 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baltatu, M.E., Chong, R.A., Huber, M.L. et al. Transport Properties of Petroleum Fractions. International Journal of Thermophysics 20, 85–95 (1999). https://doi.org/10.1023/A:1021426113355

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021426113355

Navigation