Skip to main content
Log in

Subcritical and Supercritical Water Radial Distribution Function

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

A theoretical and analytic expression for the first shell, and an analytic empirical expression for the whole radial distribution function (RDF) of water are introduced. All the asymptotic limits and functionalities of the RDF with temperature and density are incorporated in these expressions. An effective Kihara pair potential function is presented for water intermolecular interactions which incorporates the hydrogen bonding by using the chain association theory. The intermolecular pair potential parameters are adjusted to the experimental x-ray diffraction data of water RDF at various temperatures. The predicted first-shell results for water near critical and in supercritical conditions compare satisfactorily with the available neutron diffraction RDF data, with the simulation RDF results, and with the empirical RDF curves. The empirical expression initially proposed for the RDF of the Lennard–Jones fluid is extended to predict the RDF and the isothermal compressibility of water to conditions where experimental or simulated data are not available. Comparison with the Lennard–Jones fluid shows that the height of the first peak of water RDF changes much less at subcritical and supercritical conditions compared to that of the Lennard–Jones fluid which decreases appreciably going from subcritical to supercritical conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. H. Touba and G. A. Mansoori, Int. J. Thermophys. 18:1217 (1997).

    Google Scholar 

  2. E. Matteoli and G. A. Mansoori, J. Chem. Phys. 103:4672 (1995).

    Google Scholar 

  3. M. S. Wertheim, Phys. Rev. Lett. 10:321 (1963).

    Google Scholar 

  4. Y. E. Gorbaty and A. G. Kalinichev, J. Phys. Chem. 99:5336 (1995).

    Google Scholar 

  5. T. I. Mizan, P. E. Savage, and R. M. Ziff, J. Phys. Chem. 100:403 (1996).

    Google Scholar 

  6. K. Yamanaka, T. Yamaguchi, and H. Wakita, J. Chem. Phys. 101:9830 (1994).

    Google Scholar 

  7. G. Nemethy and G. H. Scheraga, J. Chem. Phys. 36:3382 (1962).

    Google Scholar 

  8. H. Touba and G. A. Mansoori, Fluid Phase Equil. 119:51 (1996).

    Google Scholar 

  9. G. E. Walrafen, M. R. Fisher, M. S. Hokmabadi, and W. H. Yang, J. Chem. Phys. 85:6970 (1986).

    Google Scholar 

  10. W. B. Brown, Phil. Trans. Royal Society of London, Ser. A 250:175 (1957).

    Google Scholar 

  11. G. A. Mansoori, Fluid Phase Equil. 87:1 (1993).

    Google Scholar 

  12. A. H. Narten and H. A. Levy, J. Chem. Phys. 55:2263 (1971).

    Google Scholar 

  13. A. A. Chialvo and P. T. Cummings, J. Phys. Chem. 100:1309 (1996).

    Google Scholar 

  14. H. C. Helgeson and D. H. Kirkham, American J. Sci. 274:1089 (1974).

    Google Scholar 

  15. A. K. Soper, F. Bruni, and M. A. Ricci, J. Chem. Phys. 106:247 (1997).

    Google Scholar 

  16. P. Postorino, R. H. Tromp, M. A. Ricci, A. K. Soper, and G. W. Neilson, Nature 366:668 (1993).

    Google Scholar 

  17. A. Lotfi, J. Vrabec, and J. Fischer, Mol. Phys. 76:1319 (1992).

    Google Scholar 

  18. J. K. Johnson, J. A. Zollweg, and K. E. Gubbins, Mol. Phys. 78:591 (1993).

    Google Scholar 

  19. G. A. Mansoori and J. F. Ely, Fluid Phase Equil. 22:253 (1985).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Touba, H., Mansoori, G.A. & Matteoli, E. Subcritical and Supercritical Water Radial Distribution Function. International Journal of Thermophysics 19, 1447–1471 (1998). https://doi.org/10.1023/A:1021939720336

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021939720336

Navigation