Skip to main content
Log in

A Large Throughput High Resolution Fourier Transform Spectrometer for Submillimeter Applications

  • Published:
International Journal of Infrared and Millimeter Waves Aims and scope Submit manuscript

Abstract

We have designed and constructed a Fourier Transform Spectrometer (FTS) for the study of submillimeter-wave mixers and optical components. The FTS has a large aperture (up to 25.4 cm) and small focal ratio (as fast as f/2.5) to achieve a large throughput. It operates in the 100-3750 GHz (3.3-125 cm−1) frequency range with a resolution of up to 75 MHz (0.0025 cm−1). Here we discuss the design goals and provide a detailed description of the construction of the FTS. In addition, we highlight the variety of studies which have been conducted with this instrument, which include characterizing SIS mixers through both direct and heterodyne detection and measuring the properties of optical materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. B. Rutledge and M. S. Muha, “Imaging Antenna Arrays”, IEEE Trans. Antennas and Propagation, vol. 30, pp. 535-540, 1982

    Google Scholar 

  2. G. M. Rebeiz, “Millimeter-Wave and Terahertz Integrated Circuit Antennas”, Proc. IEEE, vol. 80, pp. 1748-1770, 1992

    Google Scholar 

  3. J. Zmuidzinas and H. G. LeDuc, “Quasi-Optical Slot Antenna SIS Mixers,” IEEE Trans. Microwave Theory Tech., vol. 40, pp. 1797-1804, 1992

    Google Scholar 

  4. Q. Hu, C. A. Mears, and P. L. Richards, “Measurements of integrated tuning elements for SIS mixers with a Fourier transform spectrometer,” Int. J. IR and MM Waves, vol. 9, no. 4, pp. 303-320, 1988

    Google Scholar 

  5. T. H. Büttgenbach, R. E. Miller, M. J. Wengler, D. M. Watson, and T. G. Phillips, “A broadband low-noise SIS receiver for submillimeter astronomy,” IEEE Trans. Microwave Theory Tech., vol. 36, no. 12, pp. 1720-1726, 1988

    Google Scholar 

  6. G. de Lange, J. J. Kuipers, T. M. Klapwijk, R. A. Panhuyzen, H. van de Stadt, and M. W. M. de Graauw, “Superconducting resonator circuits at frequencies above the gap frequency,” J. Appl. Phys., vol. 77, no. 4, pp. 1795-1804, 1995

    Google Scholar 

  7. V. Y. Belitsky, S. W. Jacobsson, L. V. Filippenko, C. Holmstedt, V. P. Koshelets, and E. L. Kollberg, “Fourier transform spectrometer studies (300–1000 GHz) of Nb-based quasi-optical SIS detectors,” IEEE Trans. Appl. Superconductivity, vol. 5, no. 3, pp. 3445-3451, 1995

    Google Scholar 

  8. M. Bin, M. C. Gaidis, J. Zmuidzinas, T. G. Phillips, and H. G. LeDuc, “Low-noise 1 terahertz niobium superconducting tunnel junction mixer with a normal metal tuning circuit,” Appl. Phys. Lett., vol. 68, no. 12, pp. 1714-1716, 1996

    Google Scholar 

  9. M. C. Gaidis, H. G. LeDuc, M. Bin, D. Miller, J. A. Stern, and J. Zmuidzinas, “Characterization of low-noise quasi-optical SIS mixers for the submillimeter band,” IEEE Trans. Microwave Theory Tech., vol. 44, no. 7, pp. 1130-1139, 1996

    Google Scholar 

  10. J.W. Kooi, M. Chan, B. Bumble, H.G. LeDuc, P. Schaffer, and T.G. Phillips, “230 and 492 GHz low-noise SIS wave-guide receivers employing tuned NB/AlOx/Nb tunnel-junctions,” Int. J. IR and MM Waves vol. 16, pp. 2049-2068, 1995

    Google Scholar 

  11. E. Serabyn, T. G. Phillips, and C. R. Masson, “Surface figure measurements of radio telescopes with a shearing interferometer,” Appl. Optics, vol. 30, no. 10, pp. 1227-1241, 1991

    Google Scholar 

  12. SR-540 Optical Chopper, Stanford Research Systems, 1290-D Reamwood Ave., Sunnyvale, CA 94089

  13. Filament #17-1079, Perkin Elmer Corp., 7421 Orangewood Ave., Garden Grove, CA 92641.

  14. Eccosorb AN-72, Emerson & Cuming, 869 Washington St., Canton, MA 02021.

  15. R. J. Bell, Introductory Fourier transform spectroscopy, Academic Press: New York and London, 1972

    Google Scholar 

  16. Electric Cylinder model RS-2205 A-MS5-HC-Q2, Industrial Devices Corporation, 64 Digital Drive, Novato, CA 94949; (800) 747-0064

  17. Compumotor Low-Noise linear microstepping amplifier (LN Drive), Compumotor Division of Parker Hannifin, 5500 Business Park Drive, Rohnert Park, CA 94928

  18. Linear Encoder LS-603, Bidirectional Counter VRZ-405, Heidenhain Corporation, 115 Commerce Drive, Schaumburg, IL 60173

  19. H.W. Schnopper & R.I. Thompson, “Fourier Spectrometers,” in Methods of Experimental Physics 12A: Astrophysics, ed. by N. Carleton, Academic Press Inc., New York, 1974

    Google Scholar 

  20. P. L. Richards, “Fourier transform spectroscopy,” in Spectroscopic Techniques for Far-infrared, Submillimeter, and Millimeter Waves, ed. by D. H. Martin, North-Holland Pub. Co., New York Wiley: Amsterdam, 1967

    Google Scholar 

  21. O. E. Brigham, The fast Fourier transform, Englewood Cliffs, N. J., Prentice-Hall, 1974

    Google Scholar 

  22. SR-830 Lock In Amplifier, Stanford Research Systems, 1290-D Reamwood Ave., Sunnyvale, CA 94089

  23. LabVIEW, National Instruments, 6504 Bridge Point Parkway, Austin, TX 78730-5039 (512) 794-0100

  24. P-37951-00 Thermohygrometer, Cole-Parmer Instrument Co., 625 E. Bunker Ct., Vernon Hills, IL 60061

  25. Charles S. Williams, “Mirror misalignment in Fourier spectroscopy using a Michelson interferometer with circular aperture,” Appl. Optics, vol. 5, no. 6, pp. 1084-85, 1966

    Google Scholar 

  26. Piezoelectric Tilt Positioner P-840, Physik Instrumente, Main U.S. office, 3001 Redhill Ave. Bldg. 5-102, Costa Mesa, CA 92626

  27. Model 1104P, Uniphase Lasers, 163 Baypointe Parkway, San Jose, CA 95134

  28. J. W. Kooi, M. S. Chan, M. Bin, B. Bumble, and H. G. LeDuc, “The development of an 850 GHz waveguide receiver using tuned SIS junctions on 1— Si3N4 membranes,” Int. J. IR and MM Waves, vol. 16, pp. 349-362, 1995

    Google Scholar 

  29. M. Bin, M. C. Gaidis, J. Zmuidzinas, T.G. Phillips & H.G. LeDuc, “Quasi-optical SIS mixers with normal metal tuning structures,” IEEE Trans. Appl. Superconductivity, vol. 7, pp 3584-3588, 1997

    Google Scholar 

  30. M. Bin, M. C. Gaidis, D. Miller, J. Zmuidzinas, T. G. Phillips, and H. G. LeDuc, “Design and characterization of a quasi-optical SIS receiver for the 1 THz band,” Proc. Seventh Intl. Symp. Space Terahertz Tech., March 12–14, 1996 Charlottesville, VA 22903

  31. Infrared Labs, 1808 East 17th Street, Tucson, AZ 85719-6505; (520) 622-7074

  32. D. J. Benford, J. W. Kooi, and E. Serabyn, “Spectroscopic measurements of optical components around 1 Terahertz”, Proc. Ninth Intl. Symp. Space Terahertz Tech., March 1998, JPL, Pasadena, CA

    Google Scholar 

  33. M. Halpern, H. P. Gush, E. Wishnow, and V. De Cosmo, Applied Optics, vol. 25, no. 6, pp. 565-570, 1986

    Google Scholar 

  34. D. J. Benford, S. Wu, J. Pardo and E. Serabyn, 1999, Applied Optics, in preparation

  35. Francis Lord Optics, 33 Higginbotham Rd., Gladesville NSW 2111, Australia; 001-61-9807-1444

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bin, M., Benford, D.J., Gaidis, M.C. et al. A Large Throughput High Resolution Fourier Transform Spectrometer for Submillimeter Applications. International Journal of Infrared and Millimeter Waves 20, 383–400 (1999). https://doi.org/10.1023/A:1021709330349

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021709330349

Navigation