Skip to main content
Log in

Explicit dissipative structures

  • Part III. Invited Papers Dedicated to Ilya Prigogine
  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Dissipative structures consisting of a few macrovariables arise out of a sea of reversible microvariables. Unexpected residual effects of the massive underlying reversibility, on the macrolevel, cannot therefore be excluded. In the age of molecular-dynamics simulations, explicit dissipative structures like excitable systems (“explicit observers”) can be generated in a computer from first reversible principles. A class of classical, 1-D Hamiltonian systems of chaotic type is considered which has the asset that the trajectorial behavior in phase space can be understood geometrically. If, as natural, the number of particle types is much smaller than that of particles, the Gibbs symmetry must be taken into account. The permutation invariance drastically changes the behavior in phase space (quasi-periodization). The explicit observer becomes effectively reversible on a short time scale. In consequence, his ability to measure microscopic motions is suspended in a characteristic fashion. Unlike quantum mechanics whose “holistic” nature cannot be transcended, the present holistic (internal-interface) effects—mimicking the former to some extent—can be understood fully in principle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. Boltzmann,Lectures on Gas Theory, Vol. 2 (in German). (J. A. Barth, Leipzig, 1898), Sec. 90.

    Google Scholar 

  2. E. P. Wigner,Group Theory and Its Application to the Quantum Mechanics of the Atomic Spectra (Academic Press, New York, 1959; first German edn.: Vieweg, Braunschweig, 1931).

    Google Scholar 

  3. H. Goldstein,Classical Mechanics (Addison-Wesley, Reading, Massachusetts, 1980), p. 332.

    Google Scholar 

  4. G. Nicolis and I. Prigogine,Self-Organization in Nonequilibrium Systems (Wiley, New York, 1977).

    Google Scholar 

  5. L. Boltzmann, “On the question of the objective existence of the processes in inanimate nature” (in German),Sitz. Kais. Akad. Wiss. (Vienna)Math.-Naturw. Kl. 60(IIa), 83 (1897), footnote 11.

    Google Scholar 

  6. K. Gödel,On Formally Undecidable Propositions (Basic Books, New York, 1962);Monatsh. Math. Phys. 38, 173 (1931).

    Google Scholar 

  7. A. Einstein, “Autobiographical Notes,” inAlbert Einstein, Philosopher-Scientist, P. A. Schilpp, ed. (Open Court, La Salle, Illinois, 1949).

    Google Scholar 

  8. A. Keller,The Infancy of Atomic Physics: Hercules in His Cradle (Clarendon, Oxford, 1983), pp. 20 and 52.

    Google Scholar 

  9. M. Toda,Theory of Nonlinear Lattices (Springer, Berlin, 1981).

    Google Scholar 

  10. E. Cunningham,Proc. London Math. Soc. 8, 77 (1909).

    Google Scholar 

  11. B. J. Berne, ed.,Statistical Mechanics, Part B: Time-Dependent Processes (Plenum, New York, 1977), Chaps. 1 and 2.

    Google Scholar 

  12. O. E. Rössler,Lecture Notes in Physics, Vol. 179, Springer, New York (1983), p. 67.

    Google Scholar 

  13. O. E. Rössler, “A chaotic 1-D gas: some implications,” inProceedings of the First International Conference on the Physics of Phase Space (University of Maryland, May 1986), Y. S. Kim and W. W. Zachary, eds. (Springer, New York, in press).

  14. O. E. Rössler and M. Hoffmann, “Quasiperiodization in classical hyperchaos,”J. Comp. Chem. 7 (1987), in press.

  15. L. Bunimovich and Ya. G. Sinai,Comm. Math. Phys. 78, 247 (1980).

    Google Scholar 

  16. J. L. Hudson and O. E. Rössler, inDynamics of Nonlinear Systems, V. Hlavacek, ed. (Gordon and Breach, New York, 1985), pp. 193–219.

    Google Scholar 

  17. K. D. Willamowski and O. E. Rössler,Z. Naturforsch. Teil A 35, 317 (1980).

    Google Scholar 

  18. J. C. Maxwell,Theory of Heat (Appleton, New York, 1872), p. 309.

    Google Scholar 

  19. J. W. Gibbs,Trans. Conn. Acad. 3, 108 (1875), Eq. (297).

    Google Scholar 

  20. J. W. Gibbs,Elementary Principles in Statistical Mechanics (Yale University Press, New Haven, 1902), Chap. 15.

    Google Scholar 

  21. H. Weyl,Symmetry (Princeton University Press, Princeton, 1952).

    Google Scholar 

  22. E. Schrödinger,Statistical Thermodynamics (Cambridge University Press, Cambridge, 1946), Chap. 8.

    Google Scholar 

  23. A. Bach,Lett. Nuovo Cimento 43, 483 (1985).

    Google Scholar 

  24. O. E. Rössler, “Endophysics,” inReal Brains, Artificial Minds, J. Casti and A. Karlqvist, eds. (Elsevier, New York, 1987).

    Google Scholar 

  25. E. Nelson, “Derivation of the Schrödinger equation from Newtonian mechanics,”Phys. Rev. 150, 1079 (1966).

    Google Scholar 

  26. N. Campbell,Nature (London) 107, 170 (1921);119, 779 (1927).

    Google Scholar 

  27. M. Gardner,Wheels, Life and Other Mathematical Amusements (Freeman, San Francisco, 1983);Sci. Am., November 1970.

    Google Scholar 

  28. S. Fredkin, “Digital information mechanics,” MIT preprint, March 1983.

  29. D. Finkelstein, “Holistic methods in quantum logic,” inQuantum Theory and the Structures of Time and Space, Vol. 3, L. Castell, M. Drieschner, and C. F. von Weizsäcker, eds. (Carl Hanser, Munich, 1979), pp. 37–60.

    Google Scholar 

  30. H. Primas,Chemistry, Quantum Mechanics, and Reductionism (Springer, Berlin, 1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. Ilya Prigogine on the occasion of his 70th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rössler, O.E. Explicit dissipative structures. Found Phys 17, 679–688 (1987). https://doi.org/10.1007/BF01889541

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01889541

Keywords

Navigation