Skip to main content
Log in

CPT invariance and interpretation of quantum mechanics

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

This paper is a sequel to various papers by the author devoted to the EPR correlation. The leading idea remains that the EPR correlation (either in its well-known form of nonseparability of future measurements, or in its less well-known time-reversed form of nonseparability of past preparations) displays the intrinsic time symmetry existing in almost all physical theories at the elementary level. But, as explicit Lorentz invariance has been an essential requirement in both the formalization and the conceptualization of my papers, the noninvariant concept ofT symmetry has to yield in favor of the invariant concept ofPT symmetry, or even (asC symmetry is not universally valid) to that ofCPT invariance. A distinction is then drawn between “macro” special relativity, defined by invariance under the orthochronous Lorentz group and submission to the retarded causality concept, and “micro” special relativity, defined by invariance under the full Lorentz group and includingCPT symmetry. TheCPT theorem clearly implies that “micro special relativity”is relativity theory at the quantal level. It is thus of fundamental significance not only in the search of interaction Lagrangians, etc., but also in the basic interpretation of quantum mechanics, including the understanding of the EPR correlation. While the experimental existence of the EPR correlations is manifestly incompatible with macro relativity, it is fully consistent with micro relativity. Going from a retarded concept of causality to one that isCPT invariant has very radical consequences, which are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Costa de Beauregard,Found. Phys. 6, 539 (1976).

    Google Scholar 

  2. P. A. M. Dirac,The Principles of Quantum Mechanics (Oxford Clarendon Press, 1948), p. 79.

  3. A. Land%e,New Foundations of Quantum Mechanics (Cambridge University Press, 1965), p. 83.

  4. J. Schwinger,Phys. Rev. 74, 1439 (1948); see p. 1451.

    Google Scholar 

  5. O. Costa de Beauregard,Précis de mécanique quantique relativiste (Dunod, 1967); see alsoSynthese 35, 129 (1977), p. 143 [reprinted inHans Reichenbach, Logical Empiricist, W. C. Salmon, ed. (D. Reidel, 1979), pp. 341–366].

  6. R. F. O'Connell, private communication.

  7. A. Einstein, inRapports et Discussions du 5e Conseil Solvay (Gauthier Villars, 1928), pp. 253–256.

  8. A. Einstein, B. Podolsky, and N. Rosen,Phys. Rev. 47, 777 (1935).

    Google Scholar 

  9. S. J. Freedman and J. F. Clauser,Phys. Rev. Lett. 28, 938 (1972); J. F. Clauser,Phys. Rev. Lett. 36, 1223 (1976); E. S. Fry and R. C. Thompson,Phys. Rev. Lett. 37, 465 (1976).

    Google Scholar 

  10. A. Aspect,Phys. Lett. 54A, 117 (1975);Phys. Rev. D 14, 1944 (1976).

    Google Scholar 

  11. O. Costa de Beauregard,Nuovo Cim. 42B, 41 (1977);51B, 267 (1979);Lett. Nuovo Cim. 19, 113 (1977);25, 91 (1979);Phys. Lett. 60A, 93 (1977);67A, 171 (1978).

    Google Scholar 

  12. S.I. Tomonaga,Prog. Theor. Phys. 1, 27 (1946); J. Schwinger,Phys. Rev. 74, 1439 (1948); F. J. Dyson,Phys. Rev. 75, 486 (1949); R. P. Feynman,Phys. Rev. 76, 749, 769(1949).

    Google Scholar 

  13. B. D'Espagnat,Conceptual Foundations of Quantum Mechanics, 2nd ed. (Benjamin, 1976), pp. 90, 119, 238, 265, 281.

  14. J. F. Clauser and A. Shimony,Rep. Prog. Phys. 41, 1881 (1978); see p. 1920.

    Google Scholar 

  15. H. P. Stapp,Found. Phys. 7, 313 (1977).

    Google Scholar 

  16. B. D'Espagnat and J. S. Bell, private communications.

  17. N. Cufaro Petroni and J. P. Vigier,Lett. Nuovo Cim. 25, 151 (1979).

    Google Scholar 

  18. P. A. M. Dirac,Nature 168, 906 (1951).

    Google Scholar 

  19. A. R. Wilson, J. Lowe, and D. K. Butt,J. Phys. G 2, 613 (1976); M. Bruno, M. d'Agostino, and C. Maroni,Nuovo Cim. 40B, 143 (1977).

    Google Scholar 

  20. R. L. Pflegor and L. Mandel,Phys. Rev. 159, 1084 (1967);J. Opt. Soc. Am. 58, 946 (1968).

    Google Scholar 

  21. P. Eberhard,Nuovo Cim. 46B, 392 (1978).

    Google Scholar 

  22. G. Lüders,K. Dansk Videns. Selsk. 28, 5 (1954);Ann. Phys. 2, 1 (1957); W. Pauli, inNiels Bohr and the Development of Physics, W. Pauli, L. Rosenfeld, and V. Weisskopf, eds. (Pergamon, 1955), p. 30.

    Google Scholar 

  23. A. D. Fokker,Time and Space, Weight and Inertia (Pergamon, 1965).

  24. G. Racah,Nuovo Cim. 14, 322 (1937).

    Google Scholar 

  25. E. Wigner,Gott. Nachr. 31, 546 (1932).

    Google Scholar 

  26. T. S. Kuhn,The Structure of Scientific Revolutions, (University of Chicago Press, 1962; 2nd ed, 1970).

  27. P. Duhem,The Aim and Structure of Physical Theory (translated after the 1913 French edition by P. P. Wiener; Princeton Univ. Press), Part II, Chapters 4 and 6.

  28. P. F. Liao and G. C. Bjorklund,Phys. Rev. Lett. 36, 584 (1976).

    Google Scholar 

  29. S. Watanabe,Rev. Mod. Phys. 27, 179 (1955).

    Google Scholar 

  30. V. Fock,Dokl. Akad. Nauk SSSR 60, 1157 (1948).

    Google Scholar 

  31. O. Costa de Beauregard,Cah. de Phys. 2, 317 (1958); Y. Aharonov, P. G. Bergmann, and Y. Lebowitz,Phys. Rev. 134B, 1410 (1964); F. J. Belinfante,Measurements and Time Reversal in Objective Quantum Theory (Pergamon, 1975); P. C. W. Davies,The Physics of Time Asymmetry (Surrey Univ. Press, 1974).

    Google Scholar 

  32. O. Costa de Beauregard,Lett. Nuovo Cim. 26, 135 (1979).

    Google Scholar 

  33. R. Payen and J. M. Vigoureux,Lett. Nuovo Cim. 20, 263 (1977).

    Google Scholar 

  34. S. Watanabe,Phys. Rev. 84, 1008 (1951).

    Google Scholar 

  35. J. M. Jauch and F. Rohrlich,The Theory of Photons and Electrons (Addison-Wesley, 1955); see pp. 88–96.

  36. T. D. Lee and C. N. Yang,Phys. Rev. 105, 1671 (1957); L. D. Landau,Nucl. Phys. 3, 127 (1957); A. Salam,Nuovo Cim. 5, 299 (1957).

    Google Scholar 

  37. E. Wigner,Symmetries and Reflections (MIT Press, 1967), pp. 171–184.

  38. R. Descartes,Lettres (Adam and Tannery, eds.), Vol. I, p. 222 (letter 525); Vol. III, p. 663 (letter 302).

  39. H. Mehlberg, inCurrent Issues in the Philosophy of Science, H. Feighl and G. Maxwell, eds. (Holt, Rinehart, Winston, 1961), p. 105.

  40. E. H. Walker, inQuantum Physics and Parapsychology, L. Oteri ed. (Parapsychology Foundation, 1975), p. 1; R. D. Mattuck and E. H. Walker, inThe Iceland Papers, A. Puharitch ed. (Essentia Research Associates, Amherst, 1979), p. 111.

  41. H. Schmidt,Found. Phys. 8, 464 (1978).

    Google Scholar 

  42. H. Schmidt,Bull. Am. Phys. Soc. 24, 38 (1978).

    Google Scholar 

  43. H. Schmidt, inProc. Intern. Conf. Cybernetics and Society (IEEE 1977), p. 535.

  44. J. Hall, C. Kim, McElroy, and A. Shimony,Found. Phys. 7, 759 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costa de Beauregard, O. CPT invariance and interpretation of quantum mechanics. Found Phys 10, 513–530 (1980). https://doi.org/10.1007/BF00715037

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00715037

Keywords

Navigation