Skip to main content
Log in

Control of Immobilization and Hybridization on DNA Chips by Fluorescence Spectroscopy

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A new methodology for the analysis of DNA polymorphisms has been developed using specific oligonucleotide strand arrays bound to a solid silicon support recovered by a thin layer of silica. Arrays of directly synthesized oligonucleotides covalently fixed on Si/SiO2 wafers have been designed at the macroscopic scale. Using suitable nucleotide-labeled units, the fluorescence emission technique has been used as an experimental control of the molecular network bound to the support and as a method for analyzing the hybridizing abilities of the corresponding oligonucleotide array. Fluorescein has allowed us to control the molecular density of the DNA strand resulting from a complete synthetic growing process. A specific protocol using both complementary and noncomplementary units labeled with two probes, Cy3 and Cy5, was used to distinguish clearly nucleotide units fixed on the array either as hybridized sequences or by the unavoidable adsorption process. The present performance of this fluorescence detection procedure will now be used with a scanning fluorescence device to perform the analysis at the microscopic scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. K. Wachsmuth (1985) Infect. Control 6, 100.

    Google Scholar 

  2. T. Caskey (1987) Science 236, 1223.

    Google Scholar 

  3. J. Hillel, T. Schaap, A. Haberfeld, A. J. Jeffreys, Y. Plotsky, A. Cahaner, and U. Lavi (1990). Genetics 124, 783.

    Google Scholar 

  4. G. Sutherland and J. Mulley (1989) in R. H. Symons (Ed.), Nucleic Acid Probes, CRC Press, Boca Raton, FL, pp. 159-201.

    Google Scholar 

  5. L. J. Kricka (1992) Nonisotopic DNA Probe Techniques, Academic Press, Toronto, pp. 3-19.

    Google Scholar 

  6. G. H. Keller and M. M. Manak (1989) DNA Probes, Macmillan (Stockton Press), New York, pp. 149-213.

    Google Scholar 

  7. J. Dicesare, B. Grossman, E. Katz, E. Picozza, R. Ragusa, and T. Woudenberg (1993) Biotechniques 15, 152.

    Google Scholar 

  8. M. Schena (1996) Bioassays 18, 427-431.

    Google Scholar 

  9. B. R. J. Jordan (1998) Biochemistry 124, 251-258.

    Google Scholar 

  10. A. C. Pease, D. Solas, E. J. Sullivan, M. T. Cronin, C. P. Holmes, C. P. Fodor (1994) Proc. Natl. Acad. Sci. USA 91, 5022-5026.

    Google Scholar 

  11. J. Cheng, E. L. Sheldon, L. Wu, M. J. Heller, and J. P. O'Connell (1998) Anal. Chem. 70, 2321-2326.

    Google Scholar 

  12. P. N. Gilles, J. D. Wu, C. B. Foster, P. J. Dillon, and S. J. Chanock. (1999) Nature Biotechnol. 17, 365-370.

    Google Scholar 

  13. U. Maskos and E. M. Southern (1992) Nucleic Acids Res. 20, 1679-1684.

    Google Scholar 

  14. E. Souteyrand, J.-P. Cloarec, J.-R. Martin, C. Wilson, I. Laurence, S. Mikkelsen, and M.-F. Laurence (1997) J. Phys. Chem. B 101, 2980-2985.

    Google Scholar 

  15. M. Southern (1992) Nucleic Acids Res. 20, 1679-1684.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bras, M., Cloarec, JP., Bessueille, F. et al. Control of Immobilization and Hybridization on DNA Chips by Fluorescence Spectroscopy. Journal of Fluorescence 10, 247 (2000). https://doi.org/10.1023/A:1009472304903

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009472304903

Navigation