Skip to main content
Log in

Structure–Function Relationships of the Vasopressin Prohormone Domains

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

1. In this review the structure–function relationships of the different vasopressin prohormone domains are dated and discussed, with special reference to the neurophysin and glycopeptide domains.

2. The primary structures of the currently known neurophysins and glycopeptide sequences are compared and discussed.

3. The hormone-binding and aggregational properties of neurophysin are reviewed and related to a possible function within the regulated secretory pathway.

4. It is proposed, based on the properties reviewed here as well as our own data shown here, that the sorting of the vasopressin prohormone is initiated by hormone binding, which triggers aggregation of the prohormone into the characteristic dense cores of the regulated secretory pathway.

5. This may suggest that prohormone sorting into the regulated secretory pathway is, in general, determined by noncovalent, intramolecular interactions that promote aggregation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Abercrombie, D. M., Kanmera, T., Angal, S., Tamaoki, H., and Chaiken, I. M. (1984). Cooperative interactions in neurophysin-neuropeptide hormone complexes. Int. J. Peptide Protein Res. 24:218–232.

    Google Scholar 

  • Acher, R., Light, A., and DuVigneaud, V. (1958). Purification of oxytocin and vasopressin by way of a protein complex. J. Biol. Chem. 233:116–120.

    Google Scholar 

  • Ando, S., McPhie, P., and Chaiken, I. M. (1987). Sequence redesign and the assembly mechanism of the oxytocin/bovine neurophysin I biosynthetic precursor. J. Biol. Chem. 262:12962–12969.

    Google Scholar 

  • Angal, S., and Chaiken, I. M. (1982). Interdependence of neurophysin self-association and neuropeptide hormone binding as expressed by quantitative affinity chromatography. Biochemistry 21:1574–1580.

    Google Scholar 

  • Balaram, P., Bothner-By, A. A., and Breslow, E. (1973). Nuclear magnetic resonance studies of the interaction of peptides and hormones with bovine neurophysin. Biochemistry 12:4695–4704.

    Google Scholar 

  • Bauerfeind, R., and Huttner, W. B. (1993). Biogenesis of constitutive secretory vesicles, secretory granules and synaptic vesicles. Curr. Opin. Cell Biol. 5:628–635.

    Google Scholar 

  • Breslow, E., and Abrash, L. (1966). The binding of oxytocin and oxytocin analogues by purified bovine neurophysins. Biochemistry 56:640–646.

    Google Scholar 

  • Breslow, E., and Burman, S. (1990). Molecular, thermodynamic, and biological aspects of recognition and function in neurophysin-hormone systems: A model system for the analysis of protein-peptide interactions. Adv. Enzymol. 63:1–67.

    Google Scholar 

  • Breslow, E., and Gargiulo, P. (1977). Effect of low pH on neurophysin-peptide interactions: Implications for the stability of the amino-carboxylate salt bridge. Biochemistry 16:3397–3406.

    Google Scholar 

  • Breslow, E., and Walter, R. (1972). Binding properties of bovine neurophysins I and II: An equilibrium dialysis study. Mol. Pharmacol. 8:75–81.

    Google Scholar 

  • Breslow, E., Aaning, H. L., Abrash, L., and Schmir, M. (1971). Physical and chemical properties of the bovine neurophysins. J. Biol. Chem. 246:5179–5188.

    Google Scholar 

  • Breslow, E., Weis, J., and Menendez-Botet, C. J. (1973). Small peptides as analogs of oxytocin and vasopressin in their interactions with bovine neurophysin-II. Biochemistry 12:4644–4653.

    Google Scholar 

  • Breslow, E., Pagnozzi, M., and Co, R. T.-T. (1982). Chemical modification or excision of neurophysin arginine-8 associated with loss of peptide-binding ability. Biochem. Biophys. Res. Commun. 106:194–201.

    Google Scholar 

  • Breslow, E., Mishra, P. K., Huang, H.-B., and Bothner-By, A. (1992). Slowly interchanging conformers of bovine neurophysin-I in the unliganded dimeric state. Biochemistry 31:11397–11404.

    Google Scholar 

  • Buchholz, H., Schönrock, C., Fehr, S., and Richter, D. (1995). Sequence analysis of a cDNA encoding an isotocin precursor and localization of the corresponding mRNA in the brain of the cartilaginous fish Torpedo marmorata. Mol. Mar. Biol. Biotechnol. 4:179–184.

    Google Scholar 

  • Burbach, J. P. H., Seidah, N. G., and Chrétien, M. (1986). Isolation and primary structure of novel neurointermediate pituitary peptides derived from the C-terminal of the rat vasopressin-neurophysin precursor (propressophysin). Eur. J. Biochem. 156:137–142.

    Google Scholar 

  • Burford, G. D., Ginsburg, M., and Thomas, P. J. (1971). The effects of denaturants and Ca2+ on the molecular weight and polymerisation of neurophysin. Biochim. Biophys. Acta 229:730–738.

    Google Scholar 

  • Burman, S., Wellner, D., Chait, B., Chaudhary, T., and Breslow, E. (1989). Complete assignment of neurophysin disulfides indicates pairing in two separate domains. Proc. Natl. Acad. Sci. USA 86:429–433.

    Google Scholar 

  • Camier, M., Alazard, R., Cohen, P., Pradelles, P., Morgat, J.-L., and Fromageot, P. (1973). Hormonal interactions at the molecular level, A study of oxytocin and vasopressin binding to bovine neurophysins. Eur. J. Biochem. 32:207–214.

    Google Scholar 

  • Chanat, E., and Huttner, W. B. (1991). Milieu-induced, selective aggregation of regulated secretory proteins in the trans-Golgi network. J. Cell. Biol. 115:1505–1519.

    Google Scholar 

  • Chanat, E., Weiss, U., Huttner, W. B., and Tooze, S. A. (1993). Reduction of the disulfide bond of chromogranin B (secretogranin I) in the trans-Golgi network causes its missorting to the constitutive secretory pathway. EMBO J. 12:2159–2168.

    Google Scholar 

  • Chauvet, M. T., Chauvet, J., Acher, R., Sunde, D., and Thorne, A. N. (1986). Structure of a guinea pig common precursor to a MSEL-type neurophysin and copeptin. Mol. Cell. Endocrinol. 44:243–249.

    Google Scholar 

  • Chen, L., Rose, J. P., Breslow, E., Yang, D., Chang, W.-R., Furey, W. F., Jr., Sax, M., and Wang, B.-C. (1991). Crystal structure of a bovine neurophysin II dipeptide complex at 2.8 Å determined from the single-wavelength anomalous scattering signal of an incorporated iodine atom. Proc. Natl. Acad. Sci. USA 88:4240–4244.

    Google Scholar 

  • Chevrier, D., Fournier, H., Nault, C., Zollinger, M., Crine, P., and Boileau, G. (1993). Targeting of proopiomelanocortin to the regulated secretory pathway may involve cooperation between different protein domains. Mol. Cell. Endocrinol. 94:213–221.

    Google Scholar 

  • Chung, K.-N., Walter, P., Aponte, G. W., and Moore, H.-P. H. (1989). Molecular sorting in the secretory pathway. Science 243:192–197.

    Google Scholar 

  • Cool, D. R., and Loh, Y. P. (1994). Identification of a sorting signal for the regulated secretory pathway at the N-terminus of pro-opiomelanocortin. Biochimie 76:265–270.

    Google Scholar 

  • Cool, D. R., Fenger, M., Snell, C. R., and Loh, Y. P. (1995). Identification of the sorting signal motif within pro-opiomelanocortin for the regulated secretory pathway. J. Biol. Chem. 270:8723–8729.

    Google Scholar 

  • de Bree, F. M., and Burbach, J. P. H. (1994). Heterologous biosynthesis and processing of preprovasopressin in Neuro2A neuroblastoma cells. Biochimie 76:315–319.

    Google Scholar 

  • Devi, L. (1991). Consensus sequence for processing of peptide precursors at monobasic sites. FEBS Lett. 280:189–194.

    Google Scholar 

  • Dreifuss, J. J. (1975). A review on neurosecretory granules: Their contents and mechanisms of release. Ann. N.Y. Acad. Sci. 248:184–201.

    Google Scholar 

  • Fassina, G., and Chaiken, I. M. (1988). Structural requirements of peptide hormone binding for peptide-potentiated self-association of bovine neurophysin II. J. Biol. Chem. 263:13539–13543.

    Google Scholar 

  • Figueroa, J., Morley, S. D., Heierhorst, J., Krentler, C., Lederis, K., and Richter, D. (1989). Two isotocin genes are present in the white sucker Catostomus commersoni both lacking introns in their protein coding regions. EMBO J. 8:2873–2877.

    Google Scholar 

  • Gerdes, H.-H., Rosa, P., Phillips, E., Baeuerle, P. A., Frank, R., Argos, P., and Huttner, W. B. (1989). The primary structure of human secretogranin II, a widespread tyrosine-sulfated secretory granule protein that exhibits low pH-and calcium-induced aggregation. J. Biol. Chem. 264:12009–12015.

    Google Scholar 

  • Ginsburg, M., and Ireland, M. (1964). Binding of vasopressin and oxytocin to protein in extracts of bovine and rabbit neurohypophyses. J. Endocrinol. 30:131–145.

    Google Scholar 

  • Hamann, D., Hunt, N., and Ivell, R. (1992). The chicken vasotocin gene. J. Neuroendocrinol. 4:505–513.

    Google Scholar 

  • Hara, Y., Battey, J., and Gainer, H. (1990). Structure of mouse vasopressin and oxytocin genes. Mol. Brain Res. 8:319–324.

    Google Scholar 

  • Heierhorst, J., Morley, S. D., Figueroa, J., Krentler, C., Lederis, K., and Richter, D. (1989). Vasotocin and isotocin precursors from the white sucker, Catostomus commersoni: Cloning and sequence analysis of the cDNAs. Proc. Natl. Acad. Sci. USA 86:5242–5246.

    Google Scholar 

  • Heierhorst, J., Mahlmann, S., Morley, S. D., Coe, I. R., Sherwood, N. M., and Richter, D. (1990). Molecular cloning of two distinct vasotocin precursor cDNAs from chum salmon (Oncorhynchus keta) suggests ana ancient gene duplication. FEBS Lett. 260:301–304.

    Google Scholar 

  • Huang, H.-B., and Breslow, E. (1992). Identification of the unstable neurophysin disulfide and localisation to the hormone-binding site. J. Biol. Chem. 267:6750–6756.

    Google Scholar 

  • Huang, H.-B., Wellner, D., Naudé, R., Oelofsen, W., Oosthuizen, M. M. J., and Breslow, E. (1994). Amino acid sequence and properties of vasopressin-associated elephant neurophysin. Int. J. Peptide Protein Res. 44:270–277.

    Google Scholar 

  • Hyde, J. F., North, W. G., and Ben-Jonathan, N. (1989). The vasopressin-associated glycopeptide is not a prolactin releasing factor: Studies with lactating Brattleboro rats. Endocrinology 125:35–40.

    Google Scholar 

  • Ivell, R., and Richter, D. (1984). Structure and comparison of the oxytocin and vasopressin genes from the rat. Proc. Natl. Acad. Sci. USA 81:2006–2010.

    Google Scholar 

  • Kanmera, T., and Chaiken, I. M. (1985). Molecular properties of the oxytocin/bovine neurophysin biosynthetic precursor. J. Biol. Chem. 260:8474–8482.

    Google Scholar 

  • Kelly, R. B. (1991). Secretory granule and synaptic vesicle formation. Curr. Opin. Cell Biol. 3:654–660.

    Google Scholar 

  • Kelly, R. B., and Grote, E. (1993). Protein targeting in the neuron. Annu. Rev. Neurosci. 16:95–127.

    Google Scholar 

  • Land, H., Schütz, G., Schmale, H., and Richter, D. (1982). Nucleotide sequence of cloned cDNA encoding bovine arginine vasopressin-neurophysin II precursor. Nature 295:299–303.

    Google Scholar 

  • Land, H., Grez, M., Ruppert, S., Schmale, H., Rehbein, M., Richter, D., and Schütz, G. (1983). Deduced amino acid sequence from the bovine oxytocin-neurophysin precursor cDNA. Nature 302:342–344.

    Google Scholar 

  • Lazure, C., Saayman, H. S., Naudé, R. J., Oelofsen, W., and Chrétien, M. (1987). Complete amino acid sequence of a VLDV-type neurophysin from ostrich differs markedly from known mammalian neurophysins. Int. J. Peptide Protein Res. 30:634–645.

    Google Scholar 

  • Lazure, C., Saayman, H. S., Naudé, R. J., Oelofsen, W., and Chrétien, M. (1989). Ostrich MSEL-neurophysin belongs to the class of two-domain “big” neurophysin as indicated by complete amino acid sequence of the neurophysin/copeptin. Int. J. Peptide Protein Res. 33:46–58.

    Google Scholar 

  • Lord, S., and Breslow, E. (1980). Nuclear magnetic resonance spin label studies of neurophysin: Evidence for secondary peptide-binding sites. Biochemistry 19:5593–5603.

    Google Scholar 

  • Michel, G., Chauvet, J., Chauvet, M.-T., and Acher, R. (1987). One-step processing of the amphibian vasotocin precursor: Structure of a frog (Rana esculenta) “big” neurophysin. Biochem. Biophys. Res. Commun. 149:538–544.

    Google Scholar 

  • Michel, G., Lévy, B., Chauvet, M.-T., and Chauvet, J. (1990). Non-mammalian “big” neurophysins complete amino acid sequence of a two-domain MSEL-neurophysin from goose. Int. J. Peptide Protein Res. 36:302–307.

    Google Scholar 

  • Mohr, E., Schmitz, E., and Richter, D. (1988). A single rat genomic DNA fragment encodes both the oxytocin and vasopressin genes separated by 11 kilobases and oriented in opposite transcriptional directions. Biochimie 70:649–654.

    Google Scholar 

  • Morley, S. D., Schönrock, Heierhorst, J., Figueroa, J., Lederisz, K., and Richter, D. (1990). Vasotocin genes of the teleost fishes Catostomus commersoni: Gene structure, exon-intron boundary, and hormone precursor organization. Biochemistry 29:2506–2511.

    Google Scholar 

  • Nagy, G., Mulchahey, J. J., Smyth, D. G., and Neill, J. D. (1988). The glycopeptide moiety of vasopressin-neurophysin precursor is neurohypophysial prolactin releasing factor. Biochem. Biophys. Res. Commun. 151:524–529.

    Google Scholar 

  • Nakayama, K., Watanabe, T., Nakagawa, T., Kim, W.-S., Nagahama, M., Hosaka, M., Hatsuzawa, K., Kondo-Hashiba, K., and Murakami, K. (1992). Consensus sequence for precursor processing at mono-arginyl sites. J. Biol. Chem. 267:16335–16340.

    Google Scholar 

  • Nicolas, P., Wolff, J., Camier, M., Di Bello, C., and Cohen, P. (1978). Importance of neurophysin dimer and of tyrosine-49 in the binding of neurohypophyseal peptides. J. Biol. Chem. 253:2633–2639.

    Google Scholar 

  • Nojiri, H., Ishida, I., Miyashita, E., Sato, M., Urano, A., and Deguchi, T. (1987). Cloning and sequence analysis of cDNAs for neurohypophysial hormones vasotocin and mesotocin for the hypothalamus of toad, Bufo japonicus. Proc. Natl. Acad. Sci. 84:3043–3046.

    Google Scholar 

  • Pfeffer, S. R., and Rothman, J. E. (1987). Biosynthetic protein transport and sorting by the endoplasmic reticulum and Golgi. Annu. Rev. Biochem. 56:829–852.

    Google Scholar 

  • Pitts, J. E., Wood, S. P., Hearn, L., Tickle, I. J., Wu, C. W., Blundell, T. L., and Robinson, I. C. A. F. (1980). Crystallisation and preliminary crystalographic data of a porcine neurophysin I-Tyr-Phe-NH2 complex. FEBS Lett. 121:41–43.

    Google Scholar 

  • Pliska, V., and Meyer-Grass, M. (1975). Some properties of neurophysins isolated from bovine neurosecretory granules. Ann. N.Y. Acad. Sci. 248:235–246.

    Google Scholar 

  • Rholam, M., and Nicolas, P. (1981). Side-by-side dimerization of neurophysin: Sedimentation velocity, viscometry, and fluorescence polarization studies. Biochemistry 20:5837–5843.

    Google Scholar 

  • Rholam, M., Nicolas, P., and Cohen, P. (1982). Binding of neurohypophyseal peptides to neurophysin dimer promotes formation to compact and spherical complexes. Biochemistry 21:4968–4973.

    Google Scholar 

  • Riddell, D. C., Mallonee, R., Phillips, J. A., Parks, J. S., Sexton, L. A., Hamerton, J. L. (1985). Chromosomal assignment of human sequences encoding arginine vasopressin-neurophysin II and growth hormone releasing factor. Somat. Cell. Mol. Genet. 11:189–195.

    Google Scholar 

  • Rose, J. P., Yang, D., Yoo, C. S., Sax, M., Breslow, E., and Wang, B.-C. (1988). Crystals of modified bovine neurophysin II. Eur. J. Biochem. 174:145–147.

    Google Scholar 

  • Rose, J. P., Wu, C.-K., Hsiao, C.-D., Breslow, E., and Wang, B.-C. (1995). Crystal structure of the neurophysin-oxytocin complex. Nature Struct. Biol. 3:163–169.

    Google Scholar 

  • Sardana, V., and Breslow, E. (1984). Proton magnetic resonance and binding studies of proteolytically modified neurophysins. J. Biol. Chem. 259:3669–3679.

    Google Scholar 

  • Sardana, V., Carlson, J. D., Breslow, E., and Peyton, D. (1987). Chemical modifications and crosslinking of neurophysin tyrosine-49. Biochemistry 26:995–1003.

    Google Scholar 

  • Sausville, E., Carney, D., and Battey, J. (1985). The human vasopressin gene is linked to the oxytocin gene and is selectively expressed in a cultured lung cancer cell line. J. Biol. Chem. 260:10236–10241.

    Google Scholar 

  • Schlesinger, D. H., Walter, R., and Audhya, T. K. (1980). Proceedings of the Symposium on Neurohypophyseal Hormones and Other Biologically Active Peptides, Elsevier, New York.

    Google Scholar 

  • Schmale, H., Heinsohn, S., and Richter, D. (1983). Structural organization of the rat gene for the arginine vasopressin-neurophysin precursor. EMBO J. 2:763–767.

    Google Scholar 

  • Seger, M. A., and Burbach, J. P. H. (1987a). The presence and in vivo biosynthesis of fragments of CPP (the C-terminal glycopeptide of the rat vasopressin precursor) in the hypothalamo-neurohypophyseal system. Peptides 8:757–762.

    Google Scholar 

  • Seger, M. A., and Burbach, J. P. H. (1987b). Molecular forms and distribution of the carboxyl-terminal peptide of pro-pressophysin (CPP) in the rat. Neurosci. Res. Commun. 1:79–85.

    Google Scholar 

  • Sevarino, K. A., and Stork, P. (1991). Multiple preprosomatostatin sorting signals mediate secretion via discrete cAMP-and tetradecanoylphorbolacetate-responsive pathways. J. Biol. Chem. 266:18507–18513.

    Google Scholar 

  • Sevarino, K. A., Stork, P., Ventimiglia, Mandel, G., and Goodman, R. H. (1989). Amino-terminal sequences of prosomatostatin direct intracellular targeting but not processing specificity. Cell 57:11–19.

    Google Scholar 

  • Smyth, D. G., and Massey, D. E. (1979). A new glycopeptide in pig, ox and sheep pituitary. Biochem. Biophys. Res. Commun. 87:1006–1010.

    Google Scholar 

  • Stoller, T. J., and Shields, D. (1989). The propeptide of preprosomatostatin mediates intracellular transport and secretion of α-globin from mammalian cells. J. Cell Biol. 108:1647–1655.

    Google Scholar 

  • Summar, M. L., Phillips, J. A. I., and Battey, J. (1990). Linkage relationships of human arginine vasopressin-neurophysin II and oxytocin-neurophysin I to prodynorphin and other loci on chromosome 20. Mol. Endocrinol. 4:947–950.

    Google Scholar 

  • Suzuki, M., Kubokawa, K., Nagasawa, H., and Urano, A. (1995). Sequence analysis of vasotocin cDNAs of the lamprey, Lampetra japonica, and the hagfish, Eptatretus burgeri: Evolution of cylcostome vasotocin precursors. J. Mol. Endocrinol. 14:67–77.

    Google Scholar 

  • Tam, W. W. H., Andreasson, K. I., and Loh, Y. P. (1993). The amino-terminal sequence of proopiomelanocortin directs intracellular targeting to the regulated secretory pathway. Eur. J. Cell Biol. 62:294–306.

    Google Scholar 

  • Urano, A., Hyodo, S., and Suzuki, M. (1992). Molecular evolution of neurohypophysial hormone precursors. Prog. Brain Res. 92:39–46.

    Google Scholar 

  • van den Hoof, P., Seger, M. A., Burbach, J. P. H., and Urban, I. J. A. (1990). The carboxyterminal glycopeptide of propressophysin potentiates excitatory transmission in the raty lateral septum. Neuroscience 36:647–654.

    Google Scholar 

  • Van Kesteren, R. E., Smit, A. B., Dirks, R. W., De With, N. D., Geraerts, W. P. M., and Joosse, J. (1992). Evolution of the vasopressin/oxytocin superfamily: Characterization of a cDNA encoding a vasopressin-related precursor, preproconopressin, from the mollusc, Lymnea stagnalis. Proc. Natl. Acad. Sci. 89:4593–4597.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Bree, F.M., Burbach, J.P.H. Structure–Function Relationships of the Vasopressin Prohormone Domains. Cell Mol Neurobiol 18, 173–191 (1998). https://doi.org/10.1023/A:1022564803093

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022564803093

Navigation