Skip to main content
Log in

CO oxidation catalyzed by Cu‐exchanged zeolites: a density functional theory study

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The catalytic oxidation of CO by Cu‐exchanged high‐silica zeolites (e.g., ZSM‐5) has been investigated theoretically using density functional theory. Calculations reveal two distinct, parallel pathways for oxidation of CO: (i) adsorption of O2= on a reduced Cu site followed by O atom abstraction by CO, and (ii) adsorption of CO followed by its reaction with O2= to form a cyclic compound which decomposes to form CO2=. The reduced site is regenerated via two different pathways, both of which involve oxidation of one or more CO molecules: (i) abstraction of atomic oxygen by CO from the oxidized active site, and (ii) formation of a carbonate species followed by its reaction with a molecule of CO. The relevance of these reactions to the reduction of NO is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Shelef, Chem. Rev. 95 (1995) 209.

    Google Scholar 

  2. M. Iwamoto and H. Hamada, Catal. Today 10 (1991) 57.

    Google Scholar 

  3. G. Centi and S. Perathoner, Appl. Catal. A 132 (1995) 179.

    Google Scholar 

  4. J.T. Kummer, J. Phys. Chem. 90 (1986) 4747.

    Google Scholar 

  5. N.W. Cant, P.C. Hicks and B.S. Lennon, J. Catal. 54 (1978) 372.

    Google Scholar 

  6. D.R. Rainer, M. Koranne, S.M. Vesecky and D.W. Goodman, J. Phys. Chem. B 101 (1997) 10769.

    Google Scholar 

  7. P.J. Berlowitz, C.H.F. Peden and D.W. Goodman, J. Phys. Chem. 92 (1988) 5213; D.W. Goodman and C.H.F. Peden, J. Phys. Chem. 90 (1986) 4839; J. Szanyi and D.W. Goodman, J. Phys. Chem. 98 (1994) 2972.

    Google Scholar 

  8. T. Engel and G. Ertl, Adv. Catal. 28 (1979) 1.

    Google Scholar 

  9. W.F. Schneider, K.C. Hass, R. Ramprasad and J.B. Adams, J. Phys. Chem. B 102 (1998) 3692.

    Google Scholar 

  10. W.F. Schneider, K.C. Hass, R. Ramprasad and J.B. Adams, J. Phys. Chem. B 101 (1997) 4353.

    Google Scholar 

  11. W.F. Schneider, K.C. Hass, R. Ramprasad and J.B. Adams, J. Phys. Chem. 100 (1996) 6032.

    Google Scholar 

  12. K.C. Hass and W.F. Schneider, J. Phys. Chem. 100 (1996) 9292.

    Google Scholar 

  13. K.C. Hass and W.F. Schneider, Phys. Chem. Chem. Phys. (1999) 639.

  14. H.V. Brand, A. Redondo and P.J. Hay, J. Phys. Chem. B 101 (1997) 7691.

    Google Scholar 

  15. Y. Yokomichi, T. Yamabe, H. Ohtsuka and T. Kakumoto, J. Phys. Chem. 100 (1996) 14424; Y. Yokomichi, H. Ohtsuka, T. Tabata, O. Okada, Y. Yokoi, H. Ishikawa, R. Yamaguchi, H. Matusi, A. Tachibana and Y. Yamabe, Catal. Today 23 (1995) 431.

    Google Scholar 

  16. L. Rodriguez-Santiago, M. Sierka, V. Branchadell, M. Sodupe and J. Sauer, J. Am. Chem. Soc. 120 (1998) 1545.

    Google Scholar 

  17. B.L. Trout, A.K. Chakraborty and A.T. Bell, J. Phys. Chem. 100 (1996) 4173.

    Google Scholar 

  18. B.L. Trout, A.K. Chakraborty and A.T. Bell, J. Phys. Chem. 100 (1996) 17582.

    Google Scholar 

  19. D.J. Liu and J. Robota, in: Reduction of Nitrogen Oxide Emissions, ACS Symp. Series, Vol. 587 (Am. Chem. Soc., Washington, DC, 1995) p. 147.

    Google Scholar 

  20. H. Yamashita, M. Matsuoka, K. Tsuji, M. Anpo and M. Che, J. Phys. Chem. 100 (1996) 397.

    Google Scholar 

  21. C. Lamberti, S. Bordiga, M. Salvalaggio, G. Spoto, A. Zecchina, F. Geobaldo, G. Vlaic and M. Bellatreccia, J. Phys. Chem. B 101 (1997) 344.

    Google Scholar 

  22. E.J. Baerends, D.E. Ellis and P. Ross, Chem. Phys. 2 (1973) 41.

    Google Scholar 

  23. A.D. Becke, Phys. Rev. A 38 (1988) 3098.

    Google Scholar 

  24. J.P. Perdew, Phys. Rev. B 33 (1986) 8822.

    Google Scholar 

  25. H.-J. Jang, W.K. Hall and J.L. d'Itri, J. Phys. Chem. 100 (1996) 9416.

    Google Scholar 

  26. T. Beutel, J. Sarkany, G.-D. Lei, J.Y. Yan and W.M.H. Sachtler, J. Phys. Chem. 100 (1996) 845.

    Google Scholar 

  27. Y. Huang, J. Am. Chem. Soc. 95 (1973) 6636.

    Google Scholar 

  28. A.W. Aylor, S.C. Larsen, J.A. Reimer and A.T. Bell, J. Catal. 157 (1995) 592.

    Google Scholar 

  29. G. Spoto, A. Zecchina, S. Bordiga, G. Ricchiardi and G. Matara, Appl. Catal. B 3 (1994) 151.

    Google Scholar 

  30. S. Sakai, K. Kitaura and K. Morokuma, Inorg. Chem. 21 (1982) 760.

    Google Scholar 

  31. R. Caballol, E.S. Macros and J.-C. Barthelat, J. Phys. Chem. 91 (1987) 1328.

    Google Scholar 

  32. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th Ed. (Wiley, New York, 1986).

    Google Scholar 

  33. M.G. Moll, D.R. Clutter and W.E. Thompson, J. Chem. Phys. 45 (1966) 4469.

    Google Scholar 

  34. A.J. Capote, J.T. Roberts and R.J. Madix, Surf. Sci. 209 (1989) L151.

    Google Scholar 

  35. D. Sengupta, J.B. Adams, W.F. Schneider and K.C. Hass, in preparation.

  36. D. Sengupta, J.B. Adams, W.F. Schneider and K.C. Hass, in preparation.

  37. Q. Cui, K. Morokuma, J.M. Bowman and S.J. Klippenstein, J. Chem. Phys. 110 (1999) 9469.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sengupta, D., Schneider, W., Hass, K. et al. CO oxidation catalyzed by Cu‐exchanged zeolites: a density functional theory study. Catalysis Letters 61, 179–186 (1999). https://doi.org/10.1023/A:1019053729010

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019053729010

Navigation