Skip to main content
Log in

Biochemical and genetic comparison of two nitrate reductase-deficient pea mutants disturbed in the cofactor

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Two nitrate reductase (NaR)-deficient mutants of pea (Pisum sativum L.), E1 and A300, both disturbed in the molybdenum cofactor function and isolated, respectively, from cv Rondo and cv Juneau, were tested for allelism and were compared in biochemical and growth characteristics. The F1 plants of the cross E1 × A300 possessed NaR and xanthine dehydrogenase (XDH) activities comparable to those of the wild types, indicating that these mutants belong to different complementation groups, representing two different loci. Therefore, mutant E1 represents, besides mutant A300 and the allelic mutants A317 and A334, a third locus governing NaR and is assigned the gene destignation nar 3. In comparison with the wild types, cytochrome c reductase activity was increased in both mutants. The mutants had different cytochrome c reductase distribution patterns, indicating that mutant A300 could be disturbed in the ability to dimerize NaR apoprotein monomers, and mutant E1 in the catalytic function of the molybdenum cofactor. In growth characteristics studied, A300 did not differ from the wild types, whereas fully grown leaves of mutant E1 became necrotic in soil and in liquid media containing nitrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Braaksma, F. J., and Feenstra, W. J. (1982a). Isolation and characterization of nitrate reductase-deficient mutants of Arabidopsis thaliana. Theor. Appl. Genet. 6483.

    Google Scholar 

  • Braaksma, F. J., and Feenstra, W. J. (1982b). Nitrate reduction in the wildtype and a nitrate reductase-deficient mutant of Arabidopsis thaliana. Physiol. Plant 54351.

    Google Scholar 

  • Cove, D. J. (1979). Genetic studies of nitrate assimilation in Aspergillus nidulans. Biol. Rev. 54291.

    Google Scholar 

  • de Vries, S. E., Dirks, R., Mendel, R. R., Schaart, J. G., and Feenstra, W. J. (1986). Biochemical characterization of some nitrate reductase deficient mutants of Nicotiana plumbaginifolia. Plant Sci. 44105.

    Google Scholar 

  • Dirks, R., Negrutiu, I., Sidorov, V., and Jacobs, M. (1985). Complementation analysis by somatic hybridization and genetic crosses of nitrate reductase-deficient mutants of Nicotiana plumbaginifolia. Evidence for a new category of cnx mutants. Mol. Gen. Genet. 201339.

    Google Scholar 

  • Feenstra, W. J., and Jacobsen, E. (1980). Isolation of a nitrate reductase deficient mutant of Pisum sativum by means of selection for chlorate resistance. Theor. Appl. Genet. 5839.

    Google Scholar 

  • Feenstra, W. J., Jacobsen, E., van Swaaij, A. C. P. M., and de Visser, A. J. C. (1982). Effect of nitrate on acetylene reduction in a nitrate reductase deficient mutant of Pea (Pisum sativum L.). Z. Pflanzenphysiol. 105471.

    Google Scholar 

  • Glimelius, K., Ericksson, T., Grafe, T., and Müller, A. J. (1978). Somatic hybridization of nitrate reductase-deficient mutants of Nicotiana tabacum by protoplast fusion. Physiol. Plant 44273.

    Google Scholar 

  • Jacobsen, E. (1984). Modification of symbiotic interaction of pea (Pisum sativum L.) and Rhizobium leguminosarum by induced mutations. Plant Soil 82427.

    Google Scholar 

  • Jacobsen, E., Braaksma, F. J., and Feenstra, W. J. (1984). Determination of xanthine dehydrogenase activity in nitrate reductase-deficient mutants of Pisum sativum and Arabidopsis thaliana. Z. Pflanzenphysiol. 113183.

    Google Scholar 

  • Jaworski, E. G. (1971). Nitrate reductase assay in intact plant tissues. Biochem. Biophys. Res. Comm. 431274.

    Google Scholar 

  • Kleinhofs, A., Warner, R. L., Muehlbauer, F. J., and Nilan, R. A. (1978). Induction and selection of specific gene mutations in Hordeum and Pisum. Mutat. Res. 5129.

    Google Scholar 

  • Kleinhofs, A., Warner, R. L., and Narayanan, K. R. (1985). Current progress towards an understanding of the genetics and molecular biology of nitrate reductase in higher plants. Oxford Surv. Plant Molecular and Cell Biol. 291.

    Google Scholar 

  • Marton, L., Dung, T. M., Mendel, R. R., and Maliga, P. (1982a). Nitrate reductase deficient cell lines from haploid protoplast cultures of Nicotiana plumbaginifolia. Mol. Gen. Genet. 182301.

    Google Scholar 

  • Marton, L., Sidorov, V., Biasini, G., and Maliga, P. (1982b). Complementation in somatic hybrids indicates four types of nitrate reductase deficient lines in Nicotiana plumbaginifolia. Mol. Gen. Genet. 1871.

    Google Scholar 

  • Mendel, R. R., and Müller, A. J. (1978). Reconstitution of NADH-nitrate reductase in vitro from nitrate reductase-deficient Nicotiana tabacum mutants. Mol. Gen. Genet. 16177.

    Google Scholar 

  • Mendel, R. R., and Müller, A. J. (1979). Nitrate reductase-deficient mutant cell lines of Nicotiana tabacum. Further biochemical characterization. Mol. Gen. Genet. 177145.

    Google Scholar 

  • Mendel, R. R., Marton, L., and Müller, A. J. (1986). Comparative biochemical characterization of mutants at the nitrate reductase/molybdenum cofactor loci cnx A, cnx B and cnx C of Nicotiana plumbaginifolia. Plant Sci. 42125.

    Google Scholar 

  • Müller, A. J., and Grafe, R. (1978). Isolation and characterization of cell lines of Nicotiana tabacum lacking nitrate reductase. Mol. Gen. Genet. 16167.

    Google Scholar 

  • Oostindiër-Braaksma, F. J., and Feenstra, W. J. (1973). Isolation and characterization of chlorate-resistant mutants of Arabidopsis thaliana. Mutat. Res. 19175.

    Google Scholar 

  • Sanderson, G. W., and Cocking, E. C. (1964). Enzymatic assimilation of nitrate in tomato plants. I. Reduction of nitrate to nitrite. Plant Physiol. 39416.

    Google Scholar 

  • Scholten, H. J., de Vries, S. E., Nijdam, H., and Feenstra, W. J. (1985). Further characterization of the fully nitrate reductase deficient mutant G1 of Arabidopsis thaliana. Theor. Appl. Genet. 71556.

    Google Scholar 

  • Wallace, W., and Johnson, C. B. (1978). Nitrate reductase and soluble cytochrome-c reductase(s) in higher plants. Plant Physiol. 61748.

    Google Scholar 

  • Warner, R. L., Lin, C. J., and Kleinhofs, A. (1977). Nitrate reductase deficient mutants in barley. Nature 269406.

    Google Scholar 

  • Warner, R. L., Kleinhofs, A., and Muehlbauer, F. J. (1982). Characterization of nitrate reductase-deficient mutants in pea. Crop Sci. 22389.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacobsen, E., Schaart, J.G. & Warner, R.L. Biochemical and genetic comparison of two nitrate reductase-deficient pea mutants disturbed in the cofactor. Biochem Genet 25, 143–151 (1987). https://doi.org/10.1007/BF00498957

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00498957

Key words

Navigation