Skip to main content
Log in

Control of lysosomal acid phosphatase expression in man-mouse cell hybrids

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Lysosomal acid phosphatase activity in human and mouse cells was separated into multiple zones by starch gel electrophoresis. One of the two major zones in the mouse was apparently extinguished when genetic information from man and the mouse was combined in proliferating man-mouse somatic cell hybrids. The evidence suggested that the absence of the mouse lysosomal acid phosphatase (mAP-1) was influenced by the human genome. The gene coding for human acid phosphatase (hAP-1) was shown to be unlinked to the presumed human component which extinguished the mouse acid phosphatase (mAP-1). The mechanism of “extinction” is postulated to be a modification in the processing of the mouse lysosomal enzyme. A dimeric structure was suggested for acid phosphatase-1 of man, mouse, and rat since a single hybrid enzyme was expressed in man-mouse and mouse-rat somatic cell hybrids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Allen, J. M., and Gockerman, J. (1964). Electrophoretic separation of multiple forms of particle associated acid phosphatase. Ann. N. Y. Acad. Sci. 121616.

    Google Scholar 

  • Allen, S. L., Misch, M. S., and Morrison, B. M. (1963). Variation in electrophoretically separated acid phosphatases of Tetrahymena. J. Histochem. Cytochem. 11706.

    Google Scholar 

  • Axline, S. G. (1968). Isozymes of acid phosphatase in normal and Calmette-Guerin Bacillus-induced rabbit alveolar macrophages. J. Exptl. Med. 1281031.

    Google Scholar 

  • Barka, T. (1961). Studies of acid phosphatase. I. Electrophoretic separation of acid phosphatase of rat liver on polyacrylamide gels. J. Histochem. Cytochem. 9542.

    Google Scholar 

  • Beutler, E. (1969). Electrophoresis of phosphoglycerate kinase. Biochem. Genet. 3189.

    Google Scholar 

  • Beutler, E., and Kuhl, W. (1972). Biochemical and electrophoretic studies of α-galactosidase in normal man, in patients with Fabry's disease, and in Equidae. Am. J. Hum. Genet. 24237.

    Google Scholar 

  • Bigley, R. H., Stenzel, P., Jones, R. T., Campos, J. O., and Koler, R. D. (1968). Tissue distribution of human pyruvate kinase isozymes. Enzym. Biol. Clin. 910.

    Google Scholar 

  • Boone, C. M., and Ruddle, F. H. (1969). Interspecific hybridization between human and mouse somatic cells: Enzyme and linkage studies. Biochem. Genet. 3119.

    Google Scholar 

  • Cohn, Z. A., and Fedorko, M. E. (1969). The formation and fate of lysosomes. In Dingle, J. T., and Fell, H. B. (eds.), Lysosomes in Biology and Pathology, Vol. I, American Elsevier, New York, pp. 43–63.

    Google Scholar 

  • Cristofalo, V. J., Kabakjian, J. R., and Kritchevsky, D. (1967). Heterogeneity of acid phosphatase in the human dipolid cell strain WI-38 (32530). Proc. Soc. Exptl. Biol. Med. 126649.

    Google Scholar 

  • Dance, N., Price, R. G., Robinson, D., and Stirling, J. L. (1969). β-Galactosidase, β-glucosidase and N-acetyl-β-glucosaminidase in human kidney. Clin. Chim. Acta 24189.

    Google Scholar 

  • Davidson, R. L. (1972). Regulation of melanin synthesis in mammalian cells: Effect of gene dosage on the expression of differentiation. Proc. Natl. Acad. Sci. 69951.

    Google Scholar 

  • Dern, R. J., Brewer, G., Tashian, R. E., and Shows, T. B. (1966). Hereditary variation of erythrocytic 6-phosphogluconate dehydrogenase. J. Lab. Clin. Med. 67255.

    Google Scholar 

  • Dziembor, E., Gryszkiewicz, J., and Ostrowski, W. (1970). The role of neuraminic acid in the stability and enzymic activity of acid phosphatase of the human prostate gland. Experientia 26947.

    Google Scholar 

  • Edwards, Y. H., Hopkinson, D. A., and Harris, H. (1971). Inherited variants of human nucleoside phosphorylase. Ann. Hum. Genet. 34395.

    Google Scholar 

  • Fildes, R. A., and Harris, H. (1966). Genetically determined variation of adenylate kinase in man. Nature 209261.

    Google Scholar 

  • Ganschow, R., and Paigen, K. (1967). Separate genes determining the structure and intracellular location of hepatic glucuronidase. Proc. Natl. Acad. Sci. 58938.

    Google Scholar 

  • Goldstone, A., Konecny, P., and Koenig, H. (1971). Lysosomal hydrolases: Conversion of acidic to basic forms by neuraminidase. FEBS Letters 1368.

    Google Scholar 

  • Hayashi, M., Nakajima, Y., and Fishman, W. H. (1964). The cytologic demonstration of β-glucuronidase employing naphthol AS-BI glucuronide and hexazonium parosanilin; a preliminary report. J. Histochem. Cytochem. 12293.

    Google Scholar 

  • Hayflick, L., and Moorhead, P. S. (1961). The serial cultivation of human diploid cell strains. Exptl. Cell Res. 25585.

    Google Scholar 

  • Hopkinson, D. A., and Harris, H. (1971). Recent work on isozymes in man. Ann. Rev. Genet. 55.

    Google Scholar 

  • Ide, H., and Fishman, W. H. (1969). Dual localization of β-glucuronidase and acid phosphatase in lysosomes and in microsomes. II. Membrane associated enzymes. Histochemie 20300.

    Google Scholar 

  • Kit, S., Dubbs, D. R., Piekarski, L. J., and Hsu, T. C. (1963). Deletion of thymidine kinase activity from L cells resistant to bromodeoxyuridine. Exptl. Cell Res. 31297.

    Google Scholar 

  • Klebe, R. J., Chen, T., and Ruddle, F. H. (1970a). Mapping of a human genetic regulator element by somatic cell genetic analysis. Proc. Natl. Acad. Sci. 661220.

    Google Scholar 

  • Klebe, R. J., Chen, T. R., and Ruddle, F. H. (1970b). Controlled production of proliferating somatic cell hybrids. J. Cell Biol. 4574.

    Google Scholar 

  • Lin, L., and Fishman, W. H. (1972). Microsomal and lysosomal acid phosphatase isozymes of mouse kidney, characterization and separation. J. Histochem. Cytochem. 20487.

    Google Scholar 

  • Littlefield, J. W. (1964). Selection of hybrids from matings of fibroblasts in vitro and their presumed recombinants. Science 145709.

    Google Scholar 

  • Lundin, L. G., and Allison, A. C. (1966). Acid phosphatase from different organs and animal forms compared by starch gel electrophoresis. Acta Chem. Scand. 202579.

    Google Scholar 

  • Minna, J., Nelson, P., Peacock, J., Glazer, D., and Nirenberg, M. (1971). Genes for neuronal properties expressed in neuroblastoma × L cell hybrids. Proc. Natl. Acad. Sci. 68234.

    Google Scholar 

  • Mohit, B., and Fan, K. (1971). Hybrid cell line from a cloned immunoglobulin-producing mouse myeloma and a nonproducing mouse lymphoma. Science 17175.

    Google Scholar 

  • Nichols, E. A., Chapman, V. M., and Ruddle, F. H. (1973). Polymorphism and linkage for mannose phosphate isomerase in Mus musculus. Biochem. Genet. 847.

    Google Scholar 

  • Okada, S., and O'Brien, J. S. (1969). Tay-Sachs disease: Generalized absence of a beta-d-N-acetylhexosaminidase component. Science 165698.

    Google Scholar 

  • Paigen, K., and Ganschow, R. (1965). Genetic factors in enzyme realization: Genetic control of differentiation. Brookhaven Symp. Biol. 899.

    Google Scholar 

  • Peterson, J. A., and Weiss, M. C. (1972). Expression of differentiated functions in hepatoma cell hybrids: Induction of mouse albumin production in rat hepatoma-mouse fibroblast hybrids. Proc. Natl. Acad. Sci. 69571.

    Google Scholar 

  • Pinsky, L., Powell, E., and Callahan, J. (1970). GM1-gangliosidosis types 1 and 2: Enzymatic differences in cultured fibroblasts. Nature 2281093.

    Google Scholar 

  • Puck, T. T., Marcus, P. T., and Cieciura, S. J. (1956). Clonal growth of mammalian cells in vitro. J. Exptl. Med. 103:273.

    Google Scholar 

  • Rattazzi, M. C., and Davidson, R. G. (1972). Prenatal detection of Tay-Sachs disease. In Dorfman, A. (ed.), Antenatal Diagnoses, University of Chicago Press, Chicago, p. 207.

    Google Scholar 

  • Robinson, D., and Sterling, J. L. (1968). N-Acetyl-β-glucosaminidases in human spleen. Biochem. J. 107321.

    Google Scholar 

  • Ruddle, F. H. (1972). Linkage analysis using somatic cell hybrids. Advanc. Hum. Genet. 3173.

    Google Scholar 

  • Ruddle, F. H. (1973). Linkage analysis in man by somatic cell genetics. Nature 242165.

    Google Scholar 

  • Ruddle, F. H., Chen, T., Shows, T. B., and Silagi, S. (1970). Interstrain somatic cell hybrids in the mouse. Exptl. Cell Res. 60139.

    Google Scholar 

  • Sandhoff, K., Harzer, K., Wassle, W., and Jatzkewitz, H. (1971). Enzyme alterations and lipid storage in three variants of Tay-Sachs disease. J. Neurochem. 182469.

    Google Scholar 

  • Schneider, J. A., and Weiss, M. C. (1971). Expression of differentiated functions in hepatoma cell hybrids, I. Tyrosine aminotransferase in hepatoma-fibroblast hybrids. Proc. Natl. Acad. Sci. 68127.

    Google Scholar 

  • Shaw, C. R. (1964). The use of genetic variation in the analysis of isozyme structure. Brookhaven Symp. Biol. 17117.

    Google Scholar 

  • Shaw, C. R., and Prasad, R. (1970). Starch gel electrophoresis of enzymes: A compilation of recipes. Biochem. Genet. 4297.

    Google Scholar 

  • Shin, S., Khan, P. M., and Cook, P. R. (1971). Characterization of HGPRT in man-mouse somatic cell hybrids by an improved electrophoretic method. Biochem. Genet. 591.

    Google Scholar 

  • Shows, T. B. (1972a). Genetics of human-mouse somatic cell hybrids: Linkage of human genes for lactate dehydrogenase-A and esterase-A4. Proc. Natl. Acad. Sci. 69348.

    Google Scholar 

  • Shows, T. B. (1972b). Genetics of human-mouse somatic cell hybrids: Linkage of human genes for isocitrate dehydrogenase and malate dehydrogenase. Biochem. Genet. 7193.

    Google Scholar 

  • Shows, T. B., Chapman, V. M., and Ruddle, F. H. (1970). Mitochondrial malate dehydrogenase and malic enzyme: Mendelian inherited electrophoretic variants in the mouse. Biochem. Genet. 4707.

    Google Scholar 

  • Shows, T. B., May, J., and Haley, L. (1972). Human-mouse cell hybrids: A suggestion of structural mutation for dipeptidase-2 deficiency in mouse cells. Science 17858.

    Google Scholar 

  • Spencer, N., Hopkinson, D. A., and Harris, H. (1968). Adenosine deaminase polymorphism in man. Ann. Hum. Genet. 329.

    Google Scholar 

  • Swallow, D. M., and Harris, H. (1972). A new variant of the placental acid phosphatases: Its implications regarding their subunit structures and genetical determination. Ann. Hum. Genet. (Lond.) 36141.

    Google Scholar 

  • Weiss, M. C., and Chaplain, M. (1971). Expression of differentiated functions in hepatoma cell hybrids: Reappearance of tyrosine aminotransferase inducibility after the loss of chromosomes. Proc. Natl. Acad. Sci. 683026.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported in part by grants from the U.S. Public Health Service (Child Health and Human Development) and the United Health Foundation of Western New York.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shows, T.B., Lalley, P.A. Control of lysosomal acid phosphatase expression in man-mouse cell hybrids. Biochem Genet 11, 121–139 (1974). https://doi.org/10.1007/BF00485769

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00485769

Key words

Navigation