Skip to main content
Log in

Phosphorus Retention Mechanisms in the Sediment of an Eutrophic Mining Lake

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

A small, highly eutrophic mining lake (Golpa IV) in eastern Germany with a continuous input of nutrients and metals was used to study the mechanisms of phosphorus (P) fixation in the sediment. The sediment (0-15 cm) is characterised by high contents of iron (96 mg g-1 DW), aluminium (37.3 mg g-1 DW) and sulphur (54.3 mg g-1 DW) and an extreme accumulation of some trace metals. Despite oxygen free conditions in the hypolimnion and intensive sulphate reduction in the sediment, high P retention rates could be calculated from dated sediment cores (1986-1995: 11 g P m-2 a-1). The lake has shown a rapid response to reduction of P loading.

In some sediment layers unusually high total sediment P concentrations with more than 24 mg P g-1 DW were observed. More than 80% of total sediment P was bound in the BD-SRP and NaOH-SRP fractions (extraction scheme according to Psenner et al., 1984) which indicates that a substantial portion of deposited P is immobilised in an Fe or Al bound form. This corresponds well with the presence of oxidised Fe species at all sediment depths. Furthermore thermodynamic calculations indicate that vivianite precipitation is favourable in deeper anoxic sediment layers. The inventory or input of Fe or Al seems to be more important for the permanent P immobilisation in the sediment of the investigated mining lake than redox forced mobilisation processes (e.g. iron or sulphate reduction).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Born, J.: 1996, Heidelberger Beiträge zur Umweltgeoochemie 9, 1-218.

    Google Scholar 

  • Boström, B. and Pettersson, K.: 1982, Hydrobiologia 92, 415-429.

    Google Scholar 

  • Caraco, N.F., Cole, J.J. and Likens, G.E.: 1993. Hydrobilogia 253, 275-280.

    Google Scholar 

  • Cooke, G.D., Welch, E.B., Martin, A.B, Fulmer, D.G., Hyde, J.B. and Schrieve, G.D.: 1993. Hydrobiologia 253, 323-335.

    Google Scholar 

  • De-Vitre, R., Belzile, N and Tessier, A.: 1991, Limnol. Oceanogr. 36, 1480-1485.

    Google Scholar 

  • DEV: 1992, Deutsche Einheitsverfahren zur Wasser-Abwasser-und Schlammuntersuchung, Verlag Chemie Weinheim, New, Basel, Cambridge

    Google Scholar 

  • Dillon, P.J. and Evans, H.E.: 1993, Wat. Res. 27, 659-668.

    Google Scholar 

  • Einsele, W.: 1936. Arch. Hydrobiol. 29, 664-686.

    Google Scholar 

  • Emerson, S. and Widmer, G.: 1978, Geochim.-Cosmochim.-Acta 42 , 1307-1316.

    Google Scholar 

  • Friese, K., Hupfer, M. and Schultze, M.: 1998, Chemical characteristics of water and sediment in acid mining lakes of the lusatian lignite district. In. Geller, W. Klapper, II. & Salomons, W. (Eds.), Acid mining lakes-Acid mine drainage, Limnology and reclamation. Springer (in press).

  • Hall, K.J., Murphy, T.P.D. Mawhinney, M. and Ashley, K.I.: 1994. Lake Reserv. Managem. 9, 114-117.

    Google Scholar 

  • Hesslein, R.H.: 1976, Limnol. Oceanogr. 22, 913-915.

    Google Scholar 

  • Holdren, G. and Amrstrong, D.E.: 1986, Interstitial ion concentration as an indicator of phosphorus release and mineral formation in lake sediments. In: Sly, P.G. (Ed.), Sediment and Water Interactions. Springer. pp 227-242.

  • Hupfer, W., Gachter, R. and Giovanoli, R.: 1995, Aquatic Sciences 57,4, 305-324.

    Google Scholar 

  • Hupfer, M.:1995, Bindungsformen und Mobilität des Phosphors in Gewässersedimenten. In:Steinberg, Calmano, Klapper, Wilken (Eds.), Handbuch Angewandte Limnologie. Ecomed, IV-3.2

  • Jensen, H.S. and Thamdrup, B.: 1993, Hydrobiologia 253, 47-59.

    Google Scholar 

  • Jensen, H.S., Mortensen, P.B., Andersen, F.O., Rasmussen, E., and Jensen, A.: 1995, Limnol. Oceanogr. 40, 908-917.

    Google Scholar 

  • Kennedy, R.H, and Cooke, G.D.: 1982. Wat.Res.Bull. 18: 389-395.

    Google Scholar 

  • Klapper, H. Friese, K. Scharf, B. Schemmele, M. and Schultze, M.: 1998, Way of controlling Acid by Ecotechnology, In: Geller, W., Klapper, H. & Salomons, W (eds.): Acid Mining Lakes-Acid Mine Drainage. Limnology and Reclamation. Springer (in press).

  • Kleeberg, A. and Kozerski, P.: 1997, Hydroblologia 342/343, 9-26.

    Google Scholar 

  • Lindsay, W.L.: 1979, Chemical equiliblia in soils. Wiley-Interscience, New York.

    Google Scholar 

  • Moss, B.: 1980, Freshwat. Biol. 10, 261-280.

    Google Scholar 

  • Nürnberg, G.K.: 1995: Limnol.Oceanogr. 40: 1100-1111.

    Google Scholar 

  • Ohle, W.: 1953. Die Naturwissenschaften 40: 153-162.

    Google Scholar 

  • Parkhust, D.L., 1995. User's guide to PHIREEQC-A computer program for speciation, reaction-path, advective-transport, and inverse geochemical calculations: U.S. Geological Survey Water-Resources Investigations Report 95-4227, p. 143.

  • Psenner, R., Puesko, R. and Sager, M.: 1984. Arch. Hydrobiol./Suppl. 70, 111-115.

    Google Scholar 

  • Roden, E.E. and Edmonds, J.W.: 1997: Arch. Hydrobiol. 139, 3: 347-378.

    Google Scholar 

  • Sondergaard, M., Windolf, J. and Jeppesen, F.: 1996, Wat. Res. 30, 992-1002.

    Google Scholar 

  • Tessenow, U.: 1975, Arch. Hydrobiol./Suppl. 47, 325-412.

    Google Scholar 

  • Tessier, A., Campbell, P.G.C., Bisson, M.:1979, Anal. Chem. 51, 844-851.

    Google Scholar 

  • Uhlmann, D., Hupfer, M. and Appelt, C.: 1997, J. of Wat. Supply Res. and Technol.-Aqua 40, 84-94.

    Google Scholar 

  • Ulrich, K.-U.: 1997, Hydrobiologia 345, 21-38.

    Google Scholar 

  • Van der Molen, D.T. and Boers, P.C.M.: 1994, Hydrobiologia 275/276, 379-389.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hupfer, M., Fischer, P. & Friese, K. Phosphorus Retention Mechanisms in the Sediment of an Eutrophic Mining Lake. Water, Air, & Soil Pollution 108, 341–352 (1998). https://doi.org/10.1023/A:1005130002600

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005130002600

Navigation