Skip to main content
Log in

Transition metal ion complexes of thiosemicarbazones derived from 2-acetylpyridine. Part 2. The4 N-dimethyl derivative

  • Full Papers
  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Summary

Metal ion complexes of the thiosemicarbazone,N-dimethyl-2-[1-(2-pyridinyl)ethylidene]hydrazinecarbothioamide (HL4DM) have been prepared and characterized spectrally. HL4DM coordinates primarily as the deprotonated tridentate ligand (i.e., pyrïdylN, azomethineN, and thione sulphur). In contrast to related thiosemicarbazones, oxidation to cobalt(III) does not occur during complex formation with cobalt(II) halides. Oxidation does occur on reflux with ethanolic Co(BF4)2, but we isolated a planar cobalt(II) complex as well. Only with the tetrafluoroborate salts of cobalt(II) and nickel(II) are complexes isolated containing the neutral thiosemicarbazone. Square planar [Ni(L4DM)X]complexes where X=Cl, Br, and OH have been isolated and e.s.r. spectra of a 1% Cu/Ni complex are compared to the results of other workers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. L. Klayman, J. P. Scovill, J. F. Bartosevich and J. Bruce,J. Med. Chem.,26, 35 (1983) and refs. therein.

    Google Scholar 

  2. J. P. Scovill, D. L. Klayman and C. F. Franchino,J. Med. Chem.,25, 1261 (1982).

    Google Scholar 

  3. J. P. Scovill, D. L. Klayman, C. Lambros, G. E. Childs and J. D. Notsch,J. Med. Chem.,27, 87 (1984).

    Google Scholar 

  4. D. X. West and N. C. Lewis,Transition Met. Chem., in press.

  5. D. X. West, R. M. Makeever, G. Ertem, J. P. Scovill and L. K. Pannell,Transition Met. Chem.,11, 131 (1986).

    Google Scholar 

  6. Y. K. Bhoon, J. P. Scovill and D. L. Klayman,Transition Met. Chem.,7, 264 (1982).

    Google Scholar 

  7. Y. K. Bhoon, J. P. Scovill and D. L. Klayman,Ind. J. Chem.,22A, 267 (1983).

    Google Scholar 

  8. Y. K. Bhoon, D. L. Klayman and J. P. Scovill,Spectrochim. Acta,40A, 691 (1984).

    Google Scholar 

  9. D. X. West, R. M. Makeever, J. P. Scovill and D. L. Klayman,Polyhedron,3, 947 (1984).

    Google Scholar 

  10. D. X. West, P. M. Ahrweiler, G. Ertem, J. P. Scovill, D. L. Klayman, J. L. Flippen-Anderson, R. Gilardi, C. George and L. K. Pannell,Transition Met. Chem.,10, 264 (1985).

    Google Scholar 

  11. D. X. West, J. P. Scovill, J. V. Silverton and A. Bavoso,Transition Met. Chem.,11, 123 (1986).

    Google Scholar 

  12. S. K. Jain, B. S. Garg, Y. K. Bhoon, D. L. Klayman and J. P. Scovill,Spectrochim. Acta,41A, 407 (1985); S. K. Jain, B. S. Garg and Y. K. Bhoon,Transition Met. Chem.,11, 89 (1986).

    Google Scholar 

  13. S. K. Jain, B. S. Garg and Y. K. Bhoon,Spectrochim. Acta,42A, 959 (1986).

    Google Scholar 

  14. N. Saha and N. Mukherjee,Synth. React. Inorg. Met.-Org. Chem.,14, 1151 (1984).

    Google Scholar 

  15. W. J. Geary,Coord. Chem. Rev.,7, 81 (1971).

    Google Scholar 

  16. D. X. West, G. Ertem, R. M. Makeever, J. P. Scovill and D. L. Klayman,Transition Met. Chem.,10, 41 (1985).

    Google Scholar 

  17. P. Robichaud and L. K. Thompson,Inorg. Chim. Acta,85, 137 (1984); S. K. Mandal and K. Nag,J. Chem. Soc. Dalton Trans., 2141 (1984); and L. K. Thompson, A. W. Hanson and B. S. Ramaswamy,Inorg. Chem.,23, 2459 (1984).

    Google Scholar 

  18. J. Kohout, M. Hvastijova, J. Gazo and M. Nadvornik,Inorg. Chim. Acta,37, 225 (1979).

    Google Scholar 

  19. K. N. Thimmaiah, G. T. Chandrappa, Ragaswamy and Jayarama,Polyhedron,3, 1237 (1984).

    Google Scholar 

  20. A. P. Ginsberg and M. B. Robin,Inorg. Chem.,2, 817 (1963); B. J. Hathaway and D. G. Holah,J. Chem. Soc., 2408 (1964).

    Google Scholar 

  21. R. L. Carlin,J. Am. Chem. Soc.,83, 3773 (1961).

    Google Scholar 

  22. R. Raina and T. S. Srivastava,Inorg. Chim. Acta,67, 83 (1982);Ind. J. Chem.,22A, 701 (1983); andInorg. Chim. Acta,91, 137 (1984).

    Google Scholar 

  23. H. Beraldo and L. Tosi,Inorg. Chim. Acta,75, 249 (1983).

    Google Scholar 

  24. D. Nicholls,Comprehensive Inorganic Chemistry, Pergamon Press, London, p. 1049.

  25. P. S. N. Reddy and B. V. Agarwala,Synth. React. Inorg. Met.-Org. Chem.,17, 585 (1987).

    Google Scholar 

  26. N. K. Singh, S. Agarwal and R. C. Aggarwal,Ind. J. Chem.,23A, 137 (1984).

    Google Scholar 

  27. G. W. Everett Jr and R. H. Holm,J. Am. Chem. Soc.,87, 5266 (1965).

    Google Scholar 

  28. F. L. Urbach, R. D. Bereman, J. A. Topich, M. Hariharan and B. J. Kallbacher,J. Am. Chem. Soc.,96, 5063 (1974).

    Google Scholar 

  29. M. Mohan, P. Sharma and N. K. Jha,Inorg. Chim. Acta,107, 91 (1985).

    Google Scholar 

  30. B. P. Kennedy and A. B. P. Lever,Can. J. Chem.,50, 3488 (1972).

    Google Scholar 

  31. C. Preti and G. Tosi,Can. J. Chem.,54, 1558 (1976).

    Google Scholar 

  32. B. N. Figgis and J. Lewis,Prog. Inorg. Chem.,6, 37 (1964).

    Google Scholar 

  33. A. B. P. Lever,Inorganic Electronic Spectroscopy, Elsevier, New York, p. 307.

  34. Y. Shimura and R. Tsuchida,Bull. Chem. Soc. Jpn.,29, 311 (1956).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

West, D.X., Lewis, N.C. Transition metal ion complexes of thiosemicarbazones derived from 2-acetylpyridine. Part 2. The4 N-dimethyl derivative. Transition Met Chem 13, 277–280 (1988). https://doi.org/10.1007/BF01025673

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01025673

Keywords

Navigation