Skip to main content
Log in

Synthesis and physico-chemical and biological studies on ruthenium (III) complexes with Schiff bases derived from aminocarboxylic acids

  • Full Papers
  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Summary

Ruthenium(III) complexes of types [Ru(L)3], [Ru(L′)Cl(H2O)2], [Ru(L″)Cl2]n, [Ru(L‴)Cl(H2O)]n(LH =Schiff bases derived from anthranilic acid and benzaldehyde, acetophenone, vanillin, cinnamaldehyde orm-hydroxyacetophenone; L′H2=Schiff bases derived from anthranilic acid and salicylaldehyde oro-hydroxyacetophenone; L″H=Schiff bases derived fromp-aminobenzoic acid and benzaldehyde, acetophenone, vanillin, cinnamaldehyde orm-hydroxyacetophenone; L‴H2=Schiff bases derived fromp-aminobenzoic acid and salicylaldehyde oro-hydroxyacetophenone) have been synthesized and characterized on the basis of elemental analyses, conductance, magnetic moment and spectral (electronic, i.r. and1H n.m.r.) data. The wavelengths of the principal electronic absorption peaks have been accounted for quantitatively in terms of crystal field theory and various parameters have been evaluated. On the basis of the electronic spectra, an octahedral geometry has been established for all these complexes except [Ru(L″)Cl2]n. The complexes [Ru(L″)Cl2]n are pentacoordinate and a trigonal-bipyramidal environment, D3h, is suggested for the ruthenium(III) ion. The thermal behaviour of these complexes has also been studied by t.g., d.t.g and d.s.c techniques. Heats of reaction for the decomposition steps were calculated from the d.s.c. curves. The antifungal and antiviral activities of the complexes with Schiff bases derived from anthranilic acid were also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. C. Holm, G. W. Everett Jr. and A. Chakravorty,Prog. Inorg. Chem.,7, 83 (1966).

    Google Scholar 

  2. L. Sacconi,J. Am. Chem. Soc.,74, 4503 (1952);idem L. Sacconi,ibid. J. Am. Chem. Soc.,76, 3400 (1954);Coord. Chem. Rev.,1, 126 (1966).

    Google Scholar 

  3. S. Yamada,Coord. Chem. Rev.,1, 415 (1966).

    Google Scholar 

  4. R. H. Holm and M. J. O'Connor,Prog. Inorg. Chem.,14, 241 (1971).

    Google Scholar 

  5. N. S. Biradar, V. L. Roddabasanagoudar and T. M. Aminabhavi,Polyhedron,3, 575 (1984).

    Google Scholar 

  6. F. L. Bowder, R. P. Carpenter, R. V. Parrish and R. D. Pollock,Inorg. Chim. Acta,23, 35 (1977).

    Google Scholar 

  7. G. C. Percy,J. Inorg. Nucl. Chem.,37, 2071 (1975).

    Google Scholar 

  8. J. B. Hodgson and G. C. Percy,Spectrochim. Acta,32, 1291 (1976).

    Google Scholar 

  9. R. S. Nyholm and G. J. Sutton,J. Chem. Soc.,A, 567 (1958).

    Google Scholar 

  10. R. S. Nyholm,Proc. Roy Soc., 273 (1961).

  11. M. Kotani,J. Phys. Soc. Jpn.,4, 293 (1949).

    Google Scholar 

  12. B. N. Figgis,Trans. Faraday Soc.,57, 198 (1961).

    Google Scholar 

  13. H. B. Gray and C. J. Ballhausen,J. Am. Chem. Soc.,85, 260 (1963).

    Google Scholar 

  14. M. C. Jain and P. C. Jain,J. Inorg. Nucl. Chem.,39, 2183 (1977).

    Google Scholar 

  15. R. W. Olliff and A. L. Odell,J. Chem. Soc., 2467 (1964).

  16. Y. Tanabe and S. Sugano,J. Phys. Soc. Jpn.,9, 766 (1954).

    Google Scholar 

  17. A. B. P. Lever,Inorganic Electronic Spectroscopy, Elsevier, Amsterdam, 1968.

    Google Scholar 

  18. M. B. Gajendragad and U. Agarwala,J. Inorg. Nucl. Chem.,37, 2429 (1975).

    Google Scholar 

  19. J. S. Dwivedi and U. C. Agarwala,Indian J. Chem. 10, 657 (1972).

    Google Scholar 

  20. D. S. McClure,Solid State Phys.,9, 399 (1959).

    Google Scholar 

  21. S. E. Livingstone, J. H. Mayfield and P. S. Moore,Aust. J. Chem.,28, 2531 (1975).

    Google Scholar 

  22. B. N. Figgis,Introduction to Ligand Fields, Wiley Eastern, New Delhi, 1976.

    Google Scholar 

  23. C. K. Jorgensen,Hely. Chim. Acta, Faac. Extraord. Alfred Werner, 131 (1967).

  24. C. Preti and G. Tosi,Transition Met. Chem.,3, 17 (1978).

    Google Scholar 

  25. K. Nakamoto,Infrared Spectra of Inorganic and Coordination Compounds, Wiley Interscience, New York 1970.

    Google Scholar 

  26. V. S. Sharma, H. S. Mathur and A. B. Biswas,Indian J. Chem.,2, 257 (1964).

    Google Scholar 

  27. C. Oldham,Prog. Inorg. Chem.,10, 223 (1968).

    Google Scholar 

  28. O. P. Pandey, S. K. Sengupta and S. C. Tripathi,Acta Chim. Hung.,116, 29 (1984).

    Google Scholar 

  29. G. K. Parashar and A. K. Rai,Synth, React. Inorg. Met.-Org. Chem.,8, 427 (1978).

    Google Scholar 

  30. N. F. Curtis,J. Chem. Soc., 1579 (1968).

  31. A. B. P. Lever and D. Ogoen,J. Chem. Soc., 2041 (1967).

  32. K. K. Deshmukh, A. M. Hundekar and D. N. Sen,J. Indian Chem. Soc.,LVII, 1147 (1980).

    Google Scholar 

  33. A. W. Coats and J. P. Redfern,Nature,68, 201 (1964).

    Google Scholar 

  34. J. G. Horsfall,Bot. Rev.,11, 357 (1945).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, V.K., Pandey, O.P. & Sengupta, S.K. Synthesis and physico-chemical and biological studies on ruthenium (III) complexes with Schiff bases derived from aminocarboxylic acids. Transition Met Chem 12, 509–515 (1987). https://doi.org/10.1007/BF01023837

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01023837

Keywords

Navigation