Skip to main content
Log in

Direct observations of low-energy solar electrons associated with a type III solar radio burst

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

A highly anisotropic packet of solar electron intensities was observed on 6 April 1971 with a sensitive electrostatic analyzer array on the Earth-orbiting satellite IMP-6. The anisotropies of intensities at electron energies of several keV were factors ≳ 10 favoring the expected direction of the interplanetary magnetic lines of force from the Sun. The directional, differential intensities of solar electrons were determined over the energy range 1–40 keV and peak intensities were ∼ 102 cm−2 s−1 sr−1 eV−1 at 2–6 keV. This anisotropic packet of solar electrons was detected at the sattelite for a period of 4200 s and was soon followed by isotropic intensities for a relatively prolonged period. This impulsive emission was associated with the onsets of an optical flare, soft X-ray emission and a radio noise storm at centimeter wavelengths on the western limb of the Sun. Simultaneous measurements of a type III radio noise burst at kilometric wavelengths with a plasma wave instrument on the same satellite showed that the onsets for detectable noise levels ranged from 500 s at 178 kHz to 2700 s at 31.1 kHz. The corresponding drift rate requires a speed of ∼ 0.15c for the exciting particles if the emission is at the electron plasma frequency. The corresponding electron energy of ∼ 6 keV is in excellent agreement with the above direct observations of the anisotropic electron packet. Further supporting evidence that several-keV solar electrons in the anisotropic packet are associated with the emission of type III radio noise beyond ∼ 50R is provided by their time-of-arrival at Earth and the relative durations of the radio noise and the solar electron packet. Electron intensities at E ≳ 45 keV and the isotropic intensities of lower-energy solar electrons are relatively uncorrelated with the measurements of type III radio noise at these low frequencies. The implications of these observations relative to those at higher frequencies, and heliocentric radial distances ≲ 50R , include apparent deceleration of the exciting electron beam with increasing heliocentric radial distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, K. A. and Lin, R. P.: 1966, Phys. Rev. Letters 16, 1121.

    Google Scholar 

  • Anderson, K. A. and Lin, R. P.: 1969, J. Geophys. Res. 74, 3953.

    Google Scholar 

  • Anderson, K. A., Chase, L. M., Lin, R. P., McCoy, J. E., and McGuire, R. E.: 1971, Univ. of California (Berkeley) Res. Rep. 12 (73).

  • Drake, J. F.: 1971, Solar Phys. 16, 152.

    Google Scholar 

  • Fainberg, J. and Stone, R. G.: 1970, Solar Phys. 15, 433.

    Google Scholar 

  • Fainberg, J. and Stone, R. G.: 1971a, Astrophys. J. 164, L123.

    Google Scholar 

  • Fainberg, J. and Stone, R. G.: 1971b, Solar Phys. 17, 392.

    Google Scholar 

  • Frank, L. A.: 1967, J. Geophys. Res. 72, 185.

    Google Scholar 

  • Frank, L. A., Henderson, N. K., and Swisher, R. L.: 1969, Rev. Sci. Instr. 40, 685.

    Google Scholar 

  • Fredricks, R. W., Scarf, F. L., and Frank, L. A.: 1971, J. Geophys. Res. 76, 6691.

    Google Scholar 

  • Gintsburg, V. L. and Zheleznyakov, V. V.:1958, Soviet Astron. 2, 653.

    Google Scholar 

  • Hartz, T. R.: 1969, Planetary Space Sci. 17, 267.

    Google Scholar 

  • Kundu, M. R.: 1965, Solar Radio Astronomy, Interscience Publishers, New York.

    Google Scholar 

  • Lin, R. P.: 1970, Solar Phys. 12, 266.

    Google Scholar 

  • Lin, R. P. and Hudson, H. S.: 1971, Solar Phys. 17, 412.

    Google Scholar 

  • Malville, J. M.: 1962, Astrophys. J. 136, 266.

    Google Scholar 

  • Montgomery, M. D., Bame, S. J., and Hundhausen, A. J.: 1968, J. Geophys. Res. 73, 4999. NOAA Solar-Geophysical Data, No. 326, Part II, October 1971.

    Google Scholar 

  • Newkirk, G.: 1961, Astrophys. J. 133, 983.

    Google Scholar 

  • Ogilvie, K. W., Scudder, J. D., and Sugiura, M.: 1971, J. Geophys. Res. 76, 8165.

    Google Scholar 

  • Scarf, F. L., Fredricks, R. W., Frank, L. A., and Neugebauer, M.: 1971, J. Geophys. Res. 76, 5162.

    Google Scholar 

  • Sturrock, P. A.: 1961, Nature 192, 58.

    Google Scholar 

  • Tidman, D. A., Birmingham, T. J., and Stainer, H. M.: 1966, Astrophys. J. 146, 207.

    Google Scholar 

  • Van Allen, J. A.: 1970, J. Geophys. Res. 75, 29.

    Google Scholar 

  • Van Allen, J. A. and Krimigis, S. M.: 1965, J. Geophys. Res. 70, 5737.

    Google Scholar 

  • Wild, J. P.: 1950, Australian J. Sci. Res. A3, 541.

    Google Scholar 

  • Wild, J. P., Murray, J. D., and Rowe, W. C.: 1954, Australian J. Phys. 7, 439.

    Google Scholar 

  • Wild, J. P., Sheridan, K. V., and Neylan, A. A.: 1959, Australian J. Phys. 12, 369.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research supported in part by the National Aeronautics and Space Administration under contracts NAS5-11039 and NAS5-11074 and grant NGL16-001-002 and by the Office of Naval Research under contract N000-14-68-A-0196-0003.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frank, L.A., Gurnett, D.A. Direct observations of low-energy solar electrons associated with a type III solar radio burst. Sol Phys 27, 446–465 (1972). https://doi.org/10.1007/BF00153116

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00153116

Keywords

Navigation