Skip to main content
Log in

Coronal magnetic structures associated with interplanetary clouds

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Among all the signatures of solar ejecta in interplanetary space, magnetic clouds are particularly interesting. We have shown that they are associated with solar mass ejections that involve not only coronal heights, but also chromospheric heights and so, they are almost always associated with low-altitude solar activity such as Hα flares or filament eruptions. As a magnetic cloud is a very large structure, and not all the ejecta found in the interplanetary medium are clouds, it is interesting to investigate the characteristics of the large-scale coronal magnetic structures in the regions where the activity leading to a cloud takes place. In this paper we use Hoeksema's potential field model of the solar magnetosphere to obtain the magnetic structure of the site of the solar events associated with 35 interplanetary magnetic clouds. The position of the related solar activity was determined from the location of the near-surface solar explosive events (flares and filament eruptions) associated with each cloud, obtained in our previous study. We find that the solar activity associated with interplanetary magnetic clouds occurs in regions of low-altitude, magnetically closed structures lying between higher helmets, or between the highest helmets and coronal holes, where the magnetic field lines are longitudinally oriented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bravo, S., Aguilar, E., Blanco-Cano, X. et al. Coronal magnetic structures associated with interplanetary clouds. Solar Physics 188, 163–168 (1999). https://doi.org/10.1023/A:1005198620551

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005198620551

Keywords

Navigation