Skip to main content
Log in

Development of a topological model for solar flares

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

The main theoretical studies of the process involved in solar flares have been made in the two-dimensional approximation. However, the preliminary studies made with three field components suggest that reconnection could take place in the separatrices, the separator (intersection of separatrices) being a privileged location for this process. As a consequence the sites of flare kernels must be located on the intersections of the separatrices with the photosphere. Therefore, in order to understand the role of interacting large-scale structures in solar flares, we have analysed the topology of three-dimensional potential and linear force-free fields. The magnetic field has been modelled by a distribution of charges or dipoles located below the photosphere. This modelling permits us to define the field connectivity by the charges or the dipoles at both ends of every field line.

We found that the appearance of a separator above the photosphere is more likely when a parasitic bipole emerges outside the axis that joins the main polarities and when the field lines are characteristic of a field created by dipoles. The separatrices derived in the potential and force-free hypothesis have different shapes. However, in the strong field regions where flares usually occur, the separatrices of the potential and force-free field models become closer. This property makes possible the use of the potential field, as a first estimate, for computing the location in the photosphere of the separatrices and for comparing this location with the position of observed Hα kernels. Displacements of the separatrices of a force-free field result from modifications of the free energy of the field. Then force-free fields have the further capability of predicting the kernel displacement. In all cases a configuration suitable for prominence support is found above the separator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aly, J. J.: 1990, Phys. Fluids B2(8), 1928.

    Google Scholar 

  • Aly, J. J.: 1991, Astrophys. J. 375, L61.

    Google Scholar 

  • Barnes, C. W. and Sturrock, P. A.: 1972, Astrophys. J. 174, 659.

    Google Scholar 

  • Baum, P. J. and Bratenahl, A.: 1980, Solar Phys. 67, 245.

    Google Scholar 

  • Biskamp, D. and Welter, H.: 1989, Solar Phys. 120, 49.

    Google Scholar 

  • Cuperman, S., Ofman, L., and Semel, M.: 1990, Astron. Astrophys. 230, 193.

    Google Scholar 

  • Démoulin, P. and Priest, E. R.: 1992a, Astron. Astrophys. (in press).

  • Démoulin, P. and Priest, E. R.: 1992b, Solar Phys. (in press).

  • Gaizauskas, V. and Harvey, K. L.: 1991, in B. Schmieder and E. R. Priest (eds.), Proceedings of the Chantilly Meeting on Solar Flares, Paris Observatory, p. 25.

  • Gorbachev, V. S. and Somov, B. V.: 1988, Solar Phys. 117, 77.

    Google Scholar 

  • Gorbachev, V. S. and Somov, B. V.: 1989, Soviet Astron. 33, 1.

    Google Scholar 

  • Hagyard, M. J.: 1988, Solar Phys. 115, 107.

    Google Scholar 

  • Heyvaerts, J. and Hagyard, M. J.: 1991, in B. Schmieder and E. R. Priest (eds.), Proceedings of the Chantilly Meeting on Solar Flares, Paris Observatory, p. 1.

  • Heyvaerts, J., Priest, E. R., and Rust, D. M.: 1977, Astrophys. J. 216, 123.

    Google Scholar 

  • Hénoux, J. C. and Somov, B. V.: 1987, Astron. Astrophys. 185, 306.

    Google Scholar 

  • Low, B. C.: 1987, Astrophys. J. 323, 358.

    Google Scholar 

  • Low, B. C. and Lou, Y. Q.: 1991, Astrophys. J. 352, 343.

    Google Scholar 

  • Machado, M. E., Moore, R. L., Hernandez, A. M., Rovira, M. G., Hagyard, M. J., and Smith, J. B., Jr.: 1988, Astrophys. J. 326, 425.

    Google Scholar 

  • Mandrini, C., Démoulin, P., Hénoux, J. C., and Machado, M.: 1991, Astron. Astrophys. 250, 541.

    Google Scholar 

  • Martin, S. F.: 1990, in V. Ruždjak and E. Tandberg-Hanssen (eds.), ‘Conditions for the Formation of Prominences as Inferred from Optical Observations’, IAU Colloq. 117, 1.

  • Martres, M. J., Michard, R., Soru-Escaut, I., and Tsap, T. T.: 1968, Solar Phys. 5, 187.

    Google Scholar 

  • Priest, E. R.: 1981, Solar Flare Magneto-Hydrodynamics, Gordon and Breach, New York.

    Google Scholar 

  • Priest, E. R.: 1982, Solar Magneto-Hydrodynamics, D. Reidel Publ. Co., Dordrecht, Holland.

    Google Scholar 

  • Priest, E. R. and Forbes, T. G.: 1986, J. Geophys. Res. 91, 5579.

    Google Scholar 

  • Schmieder, B. and Priest, E. R.: 1991, Proceedings of the Chantilly Meeting on Solar Flares, Paris Observatory, Paris.

    Google Scholar 

  • Schmieder, B., Van Driel-Gesztelyi, L., Hénoux, J. C., and Simnett, G. M.: 1991, Astron. Astrophys. 244, 533.

    Google Scholar 

  • Sweet, P. A.: 1958, Nuovo Cimento Suppl. 8, Ser. X, 188.

    Google Scholar 

  • Syrovatskii, S. I.: 1981, Ann. Rev. Astron. Astrophys. 19, 163.

    Google Scholar 

  • Zirin, H.: 1988, Astrophysics of the Sun, Cambridge University Press, Cambridge.

    Google Scholar 

  • Zwingmann, W.: 1988, in O. Havnes et al. (eds.), Activity in Cool Star Envelopes, Kluwer Academic Publishers, Dordrecht, Holland, p. 125.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Démoulin, P., Hénoux, J.C. & Mandrini, C.H. Development of a topological model for solar flares. Sol Phys 139, 105–123 (1992). https://doi.org/10.1007/BF00147884

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00147884

Keywords

Navigation