Skip to main content
Log in

Zeeman-doppler imaging: A new option for magnetic field study of Ap and solar-type stars

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

In the task of studying stellar magnetic fields, polarimetric methods have been intensively used in Ap stars. But the observational material classically used to reconstruct stellar magnetic structures (average longitudinal magnetic field as a function of rotational phase) is not rich enough in spatial information to derive geometries more complex than centered or decentered dipoles.

In solar-type stars, all evidences of activity recently detected on their surfaces (starspots, flares, ...) indicate they are most likely magnetic stars. But polarimetric methods have always failed in these stars, probably due to the complex magnetic topologies encountered which even prevented until now a simple detection (Borra, Edwards, and Mayor, 1984). With the Zeeman broadening measurement technique proposed by Robinson (1980), no reliable results can be derived for rapid rotators, which are otherwise presumed to be the best candidates for magnetic detections. Once more, if temperature inhomogeneity charts are already available for solar-type stars (Vogt, 1987), spatial information on their magnetic distributions has conversely not yet been obtained.

The new option, recently proposed by Semel (1989) and qualified by Donati, Semel, and Praderie (1989), is based on the rotational modulation study of a rapid rotator Stokes parameter V(λ), obtained with both high spectral resolution R, and high signal-to-noise ratio S/N. Since the magnetic information used refers to localized strips on the stellar disc (as a consequence of the star rotation), multipolar structures can thus be resolved.

A new instrumentation and observing procedure have been defined for ZDI, in order to obtain very high S/N data. The method has been successfully tested on two bright magnetic Ap stars: a magnetic detection was obtained on ɛ UMa and a 15-point phase coverage of α 2 CVn is available for the reconstruction of complete 2D abundance and magnetic mappings of its photosphere.

Concerning solar-type stars, a numerical simulation was carried out in order to determine the observational constraints required for the detection of ‘typical’ magnetic field similar to those reported in slow rotators with the Robinson method (Saar, 1988). The specifications needed are S/N ≥ 400 per 40 mÅ pixel and R ∼- 6 × 104.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Angel, J. R. P. and Landstreet, J. D.: 1970, Astrophys. J. 160, L147.

    Google Scholar 

  • Borra, E. F. and Landstreet, J. D.: 1977, Astrophys. J. 212, 141.

    Google Scholar 

  • Borra, E. F. and Landstreet, J. D.: 1980, Astrophys. J. Suppl. 42, 421.

    Google Scholar 

  • Borra, E. F. and Vaughan, A. H.: 1978, Astrophys. J. 220, 924.

    Google Scholar 

  • Borra, E. F., Edwards, G., and Mayor, M.: 1984, Astrophys. J. 284, 211.

    Google Scholar 

  • Catalano, S.: 1984, in A. Mangeney and F. Praderie (eds.), Research Prospects in Stellar Activity and Variability, Obs. de Paris-Meudon, p. 243.

  • Donati, J.-.F., Semel, M., and Praderie, F.: 1989, Astron. Astrophys. 225, 467.

    Google Scholar 

  • Donati, J.-F., Semel, M., and del Toro Iniesta, J. C.: 1990, Astron. Astrophys. Letters (submitted).

  • Donati, J.-.F., Semel, M., Rees, D. E., Taylor, K., and Robinson, R. D.: 1990, Astron. Astrophys. Letters (in press).

  • Giampapa, M. S., Golub, L., and Worden, S. P.: 1983, Astrophys. J. 268, L121.

    Google Scholar 

  • Glogalevsky, Yu. V., Bychkov, V. D., Iliev, I. Kh., Naidenov, I. D., Romanyuk, I. I., Shtol', V. G., and Chuntonov, G. A.: 1982, Izv. Spets. Astrofiz. Obs. 15, 14.

    Google Scholar 

  • Gondoin, Ph.: 1986, Thesis, Paris VII University.

  • Gondoin, Ph., Giampapa, M. S., and Bookbinder, J. A.: 1985, Astrophys. J. 297, 710.

    Google Scholar 

  • Gondoin, Ph., Mangeney, A., and Praderie, F.: 1987, Astron. Astrophys. 174, 187.

    Google Scholar 

  • Goncharsky, A. V., Ryabchikova, T. A., Stepanov, V. V., Khokhlova, V. L., and Yagola, A. G.: 1983, Soviet Astron. 27, 49.

    Google Scholar 

  • Gray, D. F.: 1976, The Observation and Analysis of Stellar Photospheres, Wiley and Sons, New York.

    Google Scholar 

  • Gray, D. F.: 1984, Astrophys. J. 277, 640.

    Google Scholar 

  • Hartmann, L.: 1987, in J. L. Linsky and R. E. Stencel (eds.), Cool Stars, Stellar System, and the Sun, 1, Springer-Verlag, Heidelberg.

    Google Scholar 

  • Hatzes, A. P.: 1987, in ‘The Impact of Very High S/N Spectroscopy on Stellar Physics’, IAU Symp. 132, 199.

    Google Scholar 

  • Landstreet, J. D.: 1980, Astron. J. 85, 611.

    Google Scholar 

  • Landstreet, J. D.: 1976, private communication with E. F. Borra, reported in Borra and Vaughan, 1978.

  • Landstreet, J. D., Borra, E. F., Angel, J. R. P., and Illing, R. M. E.: 1975, Astrophys. J. 201, 624.

    Google Scholar 

  • Marcy, G. W.: 1984, Astrophys. J. 276, 286.

    Google Scholar 

  • Michaud, G.: 1970, Astrophys. J. 160, 640.

    Google Scholar 

  • Parker, E. N.: 1955, Astrophys. J. 122, 293.

    Google Scholar 

  • Piskunov, N. E.: 1985, Soviet Astron. Letters 11, 1.

    Google Scholar 

  • Pyper, D. M.: 1969, Astrophys. J. Suppl 18, 347.

    Google Scholar 

  • Rice, J. B., Wehlau, W. H., and Khokhlova, V. L.: 1989, Astron. Astrophys. 208, 179.

    Google Scholar 

  • Robinson, R. D.: 1980, Astrophys. J. 239, 961.

    Google Scholar 

  • Robinson, R. D., Worden, S. P., and Harvey, J. W.: 1980, Astrophys. J. 236, L155.

    Google Scholar 

  • Rodono, M., Cutispoto, G., Pazzani, V., Catalano, S., Byrne, P. B., Doyle, J. G., Butler, C. J., Andrews A. D., Blanco, C., Marilli, E., Linsky, J. L., Scaltriti, F., Busso, M., Cellino, A., Hopkins, J. L., Okazaki, A., Hayashi, S. S., Zeilik, M., Helston, R., Henson, R., Smith, P., and Simon, T.: 1986, Astron. Astrophys. 165, 135.

    Google Scholar 

  • Saar, S. H.: 1987, in J. L. Linsky and R. E. Stencel (eds.), Cool Stars, Stellar System, and the Sun, 10, Springer-Verlag, Heidelberg.

    Google Scholar 

  • Saar, S. H.: 1988, Astrophys. J. 324, 441.

    Google Scholar 

  • Semel, M.: 1987, Astron. Astrophys. 178, 257.

    Google Scholar 

  • Semel, M.: 1989, Astron. Astrophys. 225, 456.

    Google Scholar 

  • Skilling, J. and Bryan, R. J.: 1984, Monthly Notices Roy. Astron. Soc. 211, 111.

    Google Scholar 

  • Tikhonov, A. N. and Arsenin, N. Ya.: 1972, Methods of Solving Incorrectly Posed Problems, Nauka, Moscow.

    Google Scholar 

  • Vaughan, A. H., Baliunas, S. L., Middlekoop, F., Hartmann, L., Mihalas, D., Noyes, R. W., and Preston G. W.: 1981, Astrophys. J. 250, 276.

    Google Scholar 

  • Vogt, S. S.: 1987, in M. Spite and G. Cayrel (eds.), ‘The Impact of Very High S/N Spectroscopy on Stellar Physics’, IAU Symp. 132, 253.

  • Vogt, S. S., Penrod, G. D., and Hatzes, A. P.: 1987, Astrophys. J. 321, 496.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donati, J.F., Semel, M. Zeeman-doppler imaging: A new option for magnetic field study of Ap and solar-type stars. Sol Phys 128, 227–242 (1990). https://doi.org/10.1007/BF00154159

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00154159

Keywords

Navigation