Skip to main content
Log in

Aminoglycoside-3″-adenyltransferase confers resistance to spectinomycin and streptomycin in Nicotiana tabacum

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The bacterial gene aad A encodes the enzyme aminoglycoside-3″-adenyltransferase that confers resistance to spectinomycin and streptomycin in Escherichia coli. Chimeric genes have been constructed for expression in plants, and were introduced into Nicotiana tabacum by Agrobacterium binary transformation vectors. Spectinomycin or streptomycin in selective concentrations prevent greening of N. tabacum calli. Transgenic clones, however, formed green calli on selective media containing spectinomycin, streptomycin, or both drugs. Resistance was inherited as a dominant Mendelian trait in the seed progeny. Resistance conferred by the chimeric aad A gene can be used as a color marker similar to the resistance conferred by the streptomycin phosphotransferase gene to streptomycin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bevan MW, Flavell RB, Chilton MD: A chimeric antibiotic resistance gene as a selectable marker for plant cell transformation. Nature 304: 184–187 (1983).

    Google Scholar 

  2. Chinault AC, Blakesley VA, Roessler E, Willis DG, Smith CA, Cook RG, Fenwick RG: Characterization of transferable plasmids for Shigella flexneri 2a that confer resistance trimethoprim, streptomycin and sulfonamides. Plasmid 15: 119–131 (1986).

    PubMed  Google Scholar 

  3. Comai L, Facciotti D, Hiatt WR, Thompson G, Rose ER, Stalker DM: Expression in plants of a mutant aro A gene from Salmonella typhimurium confers tolerance to glyphosate. Nature 317: 741–744 (1985).

    Google Scholar 

  4. Deblaere R, Reynaerts A, Hofte H, Hernalsteens JP, Leemans J, VanMontagu M: Vectors for cloning in plant Cells. Methods Enzymol 153: 277–292 (1987).

    Google Scholar 

  5. DeBlock M, Botterman J, Vandewiele M, Dockx J, Thoen C, Gossele V, Movva NR, Thompson C, VanMontagu M, Leemans J: Engineering herbicide resistance in plants by expression of a detoxifying enzyme. EMBO J 6: 2513–2518 (1987).

    Google Scholar 

  6. Depicker A, Stachel S, Dhaese P, Zambryski P, Goodman HM: Nopaline synthase: Transcript mapping and DNA sequence. J Mol Appl Genet 1: 561–573 (1982).

    PubMed  Google Scholar 

  7. Eicholtz DA, Rogers SG, Horsch RB, Klee HJ, Hayford M, Hoffmann NL, Braford SB, Funk C, Flick J, O'Connell KM, Fraley RT: Expression of mouse dihydrofolate reductase gene confers methotrexate resistance in transgenic Petunia plants. Somatic Cell Mol Genet 13: 67–76 (1987).

    PubMed  Google Scholar 

  8. Fluhr R, Aviv D, Galun E, Edelman M: Efficient induction and selection of chloroplast-encoded antibiotic resistant mutants in Nicotiana. Proc Natl Acad Sci USA 82: 1485–1489 (1985).

    Google Scholar 

  9. Fraley RT, Rogers SG, Horsch RB, Sanders PR, Flick JS, Adams SP, Bittner ML, Brand LA, Fink CL, Fry YS, Galluppi GR, Goldberg SB, Hoffmann NL, Woo SC: Expression of bacterial genes in plant cells. Proc Natl Acad Sci USA 80: 4803–4807 (1983).

    PubMed  Google Scholar 

  10. Galbraith DW, Harkins KR, Maddox JM, Ayers NM, Sharma DP, Firoozabady E: Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220: 1049–1051 (1983).

    Google Scholar 

  11. Gielen J, DeBeuckeleer M, Seurnick J, Deboeck F, DeGreve H, Lemmers M, VanMontagu M, Schell J: The complete nucleotide sequence of the TL-DNA of the Agrobacterium plasmid pTiAch5. EMBO J 3: 835–846 (1984).

    PubMed  Google Scholar 

  12. Harpster MH, Townsend JA, Jones JDG, Bedbrook J, Dunsmuir P: Relative strengths of the 35S cauliflower mosaic virus, 1′, 2′, and nopaline synthase promoters in transformed tobacco, sugarbeet and oilseed rape callus tissue. Mol Gen Genet 212: 182–190 (1988).

    Article  PubMed  Google Scholar 

  13. Hayford MB, Medford JI, Hoffman NL, Rogers SG, Klee HJ: Development of a plant transformation selection system based on expression of genes encoding gentamycin acetyltransferases. Plant Physiol 86: 1216–1222 (1988).

    Google Scholar 

  14. Herrera-Estrella L, DeBlock M, Messens E, Hernalstens JP, VanMontagu M, Schell J: Chimeric genes as dominant selectable markers in plant cells. EMBO J 2: 987–995 (1983).

    Google Scholar 

  15. Hille J, Verheggen F, Roelvink P, Franssen H, vanKammen A, Zabel P: Bleomycin resistance: a new dominant selectable marker for plant cell transformation. Plant Mol Biol 7: 171–176 (1986).

    Google Scholar 

  16. Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA: A binary plant vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciens Ti plasmid. Nature 303: 179–180 (1983).

    Google Scholar 

  17. Hood EH, Jen G, Kayes L, Kramer J, Fraley RT, Chilton MD: Restriction endonuclease map of pTi Bo542, a potential Ti plasmid vector for genetic engineering of plants Biotechnology 2: 702–709 (1984).

    Article  Google Scholar 

  18. Horsch RB, Fry JE, Hoffman NL, Eicholtz D, Rogers SD, Fraley RT: A simple and general method for transferring genes into plants. Science 227: 1229–1231 (1985).

    Google Scholar 

  19. Jones JDG, Svab Z, Harper EC, Hurwitz CD, Maliga P: A dominant nuclear streptomycin resistance merker for plant cell transformation. Mol Gen Genet 210: 86–89 (1987).

    Google Scholar 

  20. Jones JDG, Gilbert DE, Grady KL, Jorgensen RA: T-DNA structure and gene expression in Petunia plants transformed by Agrobacterium tumefaciens C58 derivatives. Mol Gen Genet 207: 478–485 (1987).

    Article  Google Scholar 

  21. Jones JDG, Carland FM, Maliga P, Dooner HK: Visual detection of the maize element Activator (Ac) in tobacco seedlings. Science 244: 204–207 (1989).

    Google Scholar 

  22. Lee KY, Townsend J, Tepperman J, Black M, Chui CF, Mazur B, Dunsmuir P, Bedbrook J: The molecular basis of sulfonylurea herbicide resistance in tobacco. EMBO J 7: 1241–1248 (1988).

    Google Scholar 

  23. Maliga P: Cell culture procedures in mutant selection and characterization in Nicotiana plumbaginifolia. In: Vasil IK (ed) Cell Culture and Somatic Cell Genetics of Plants, pp. 552–562. Academic Press, Orlando, FL (1984).

    Google Scholar 

  24. Maliga P, Svab Z, Harper EC, Jones JDG: Improved expression of streptomycin resistance in plants due to a deletion in the streptomycin phosphotransferase coding sequence. Mol Gen Genet 214: 456–459 (1988).

    PubMed  Google Scholar 

  25. Maniatis T, Fritsch EF, Sambrook J: Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1982).

    Google Scholar 

  26. Shah DM, Horsch RB, Klee HJ, Kishore GM, Winter JA, Tumer NE, Hironaka CM, Sanders PR, Gasser CS, Aykent S, Siegel NR, Rogers SG, Fraley RT: Engineering herbicide tolerance in transgenic plants. Science 233: 478–481 (1986).

    Google Scholar 

  27. Taylor DP, Cohen SN: Structural and functional analysis of cloned DNA segments containing the replication and incompatibility regions of a miniplasmid derived from a copy number mutant of NR1. J Bact 137: 92–104 (1979).

    PubMed  Google Scholar 

  28. Thomasow M, Nutter R, Montoya A, Gordon M, Nester E: Integration and organization of the Ti plasmid sequences in crown gall tumors. Cell 19: 729–739 (1980).

    PubMed  Google Scholar 

  29. Van denElzen PJM, Townsend J, Lee KY, Bedbrook JR: A chimeric hygromycin resistance gene as a selectable marker in plant cells. Plant Mol Biol 5: 299–302 (1985).

    Google Scholar 

  30. Van denElzen PJM, Lee KY, Townsend J, Bedbrook J: Simple binary vectors for DNA transfer to plant cells. Plant Mol Biol 5: 49–154 (1985).

    Google Scholar 

  31. Velten J, Velten R, Hain R, Schell J: Isolation of a dual plant promoter fragment from the Ti plasmid of Agrobacterium tumefaciens. EMBO J 3: 2723–2730 (1984).

    Google Scholar 

  32. Waldron C, Murphy EB, Roberts JL, Gustafson GD, Armour SL, Malcolm SK: Kesistance to hygromycin B. A new marker for plant transformation. Plant Mol Biol 5: 103–108 (1985).

    Google Scholar 

  33. Wohlleben W, Arnold W, Broer I, Hillemann D, Strauch E, Puhler A: Nucleotide sequence of the phosphinotricin N-acetyltransferase gene from Streptomyces viridochromogenes Tu494 and its expression in Nicotiana tabacum. Gene 70: 25–37 (1988).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Svab, Z., Harper, E.C., Jones, J.D.G. et al. Aminoglycoside-3″-adenyltransferase confers resistance to spectinomycin and streptomycin in Nicotiana tabacum . Plant Mol Biol 14, 197–205 (1990). https://doi.org/10.1007/BF00018560

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00018560

Key words

Navigation