Photosynthetica 1997, 33(1):81-90 | DOI: 10.1023/A:1022179322721

Partial decline of Arachis hypogaea L. photosynthesis triggered by drought stress

J.A. Lauriano1, P.S. Campos2, J.C. Ramalho3, F.C. Lidon4, M.E. Guedes5, M. do Céu Matos2
1 Fac. Ciências Agrárias, Univ. Agostinho Neto, Huambo, Angola
2 Dept. Fisiologia Vegetal, Estação Agronómica Nacional, Quinta do Marquês, Oeiras, Portugal
3 Centro de Estudos de Produção e Tecnologia Agrícolas - Inst. Inv. Científica Tropical, Lisboa Codex, Portugal
4 Sector de Biologia Vegetal, Fac, Ciências e Tecnologia - Univ. Nova de Lisboa, Monte-da-Caparica, Portugal
5 Centro de Investigação das Ferrugens do Cafeeiro - Inst. Inv. Científica Tropical, Quinta do Marquês, Oeiras, Portugal

Photosynthetic capacity (PC) of three peanut cultivars (Arachis hypogaea L. cvs. 57-422, 73-30, and GC 8-35) decreased during drought stress (decline in relative water content from ca. 95 to 70 %) and recovered two days after rewatering. Mild water stress was not limiting for the total ribulose-1,5-bisphosphate carboxylase/oxygenase activity, since this enzyme activity increased under drought. Photosystem (PS) 2 and PS1 (the latter only in cv. GC 8-35) electron transport activities decreased under drought. The ratio of the variable to maximal chlorophyll fluorescence (Fv/Fm) decreased mainly in the cv. GC 8-35. All cultivars showed decreases in photochemical quenching (qP) and quantum yield of PS2 electron transport (Φe). Increase of basal fluorescence (F0) was observed in the cvs. 73-30 and GC 8-35, while the cv 57-422 showed a decrease. After rewatering a sharp increase was observed in the majority of the parameters. Thus under the present stress conditions, the cv GC 8-35 was the most affected for all the parameters under study. The cv. 57-422 showed a higher degree of tolerance being gradually affected in photosynthetic capacity (PC) in contrast to the two other cvs. which showed a sharp decrease in PC at the beginning of the drought cycle.

Additional key words: carbon assimilation; chlorophyll fluorescence; cultivars; electron transport; peanut; photosynthetic capacity; photosystems 1 and 2; ribulose 1,5-bisphosphate carboxylase, oxygenase water stress

Published: March 1, 1997  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Lauriano, J.A., Campos, P.S., Ramalho, J.C., Lidon, F.C., Guedes, M.E., & do Céu Matos, M. (1997). Partial decline of Arachis hypogaea L. photosynthesis triggered by drought stress. Photosynthetica33(1), 81-90. doi: 10.1023/A:1022179322721
Download citation

References

  1. Annerose, D.J.M.: Recherches sur les mécanismes physiologiques d'adaptation à la sécheresse. Application au cas de l'arachide (Arachis hypogaea L.) cultivée au Sénégal.-Thèse de Doctorat en Sciences Naturelles. Paris VII Université, Paris 1990.
  2. Arnon, D.I.: Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris.-Plant Physiol. 24: 1-15, 1949. Go to original source...
  3. Björkman, O., Powles, S.B.: Inhibition of photosynthetic reactions under water stress: interaction with light level.-Planta 161: 490-504, 1984. Go to original source...
  4. Èatský, J.: Determination of water deficit in discs cut out from leaf blades.-Biol. Plant. 2: 76-77, 1960. Go to original source...
  5. Cornic, G.: Interaction between sublethal pollution by sulphur dioxide and drought stress. The effect on photosynthetic capacity.-Physiol. Plant. 71: 115-119, 1987. Go to original source...
  6. Cornic, G., Papageorgiou, I., Louason, G.: Effect of a rapid and a slow drought cycle followed by rehydration on stomatal and non-stomatal components of leaf photosynthesis in Phaseolus vulgaris L.-J. Plant Physiol. 126: 309-318, 1987. Go to original source...
  7. Demmig, B., Winter, K., Krüger, A., Czygan, F.-C.: Photoinhibition and zeaxanthin formation in intact leaves. A possible role of the xanthophyll cycle in the dissipation of excess light energy.-Plant Physiol. 84: 218-224, 1987. Go to original source...
  8. Di Marco, G., Massacci, A., Gabrielli, R.: Drought effects on photosynthesis and fluorescence in hard wheat cultivars grown in the field.-Physiol. Plant. 74: 385-390, 1988. Go to original source...
  9. Di Marco, G., Tricoli, D.: Effect of water deficit on photosynthesis and electron transport in wheat grown in a natural environment-J. Plant Physiol. 142: 156-160, 1993. Go to original source...
  10. Droppa, M., Masojidek, J., Rózsa, Z., Wolak, A., Horváth, L.I., Farkas, T., Horváth, G.: Characteristics of Cu deficiency-induced inhibition of photosynthetic electron transport in spinach chloroplasts.-Biochim. biophys. Acta 891: 75-84, 1987. Go to original source...
  11. Franklin, L.A., Levavasseur, G., Osmond, C.B., Henley, W.J., Ramus, J.: Two components of onset and recovery during photoinhibition of Ulva rotundata.-Planta 186: 399-408, 1992. Go to original source...
  12. Genty, B., Briantais, J.-M., Baker, N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence.-Biochim. biophys. Acta 990: 87-92, 1989. Go to original source...
  13. Genty, B., Briantais, J.-M., Vieira da Silva, J.B.: Effects of drought on primary photosynthetic processes of cotton leaves.-Plant Physiol. 83: 360-364, 1987. Go to original source...
  14. Govindjee, Downton, W.J.S., Fork, B.C., Armond, P.A.: Chlorophyll a fluorescence transient as an indicator of water potential of leaves.-Plant Sci. Lett. 20: 191-194, 1981. Go to original source...
  15. Havaux, M.: Stress tolerance of photosystem II in vivo. Antagonistic effects of water, heat, and photoinhibition stresses.-Plant Physiol. 100: 424-432, 1992. Go to original source...
  16. Horton, P., Bowler, J.R.: Chlorophyll fluorescence transients.-In: Harwood, J.L., Bowler, J.R. (ed.): Methods in Plant Biochemistry. Vol. 4. Pp. 259-298. Academic Press, New York 1990.
  17. Jefferies, R.A.: Drought and chlorophyll fluorescence in field-grown potato (Solanum tuberosum).-Physiol. Plant. 90: 93-97, 1994. Go to original source...
  18. Johnson, R.C., Mornhinweg, G.D.W., Ferris, D.M., Heitholt, J.J.: Leaf photosynthesis and conductance of selected Triticum species at different water potentials.-Plant Physiol. 83: 1014-1017, 1987. Go to original source...
  19. Joshi, S.C.: Species specific diurnal changes in chlorophyll fluorescence in tropical deciduous and evergreen plants growing in the field during summer.-Photosynthetica 31: 549-557, 1995.
  20. Kaiser, W.M.: Effects of water deficit on photosynthetic capacity.-Physiol. Plant. 71: 142-149, 1987a. Go to original source...
  21. Kaiser, W.M.: Non-stomatal, primary dehydration effects on photosynthesis: possible mechanisms for reversible and irreversible damage.-Curr. Topics Plant Biochem. Physiol. 6: 119-133, 1987b.
  22. Krampitz, M.J., Klug, K., Fock, H.P.: Rates of photosynthetic CO2 uptake, photorespiratory CO2 evolution and dark respiration in water stressed sunflower and bean leaves.-Photosynthetica 18: 322-328, 1984.
  23. Krause, G.H.: Photoinhibition of photosynthesis. An evaluation of damaging and protective mechanisms.-Physiol. Plant. 74: 566-574, 1988. Go to original source...
  24. Krause, G.H., Weis, E.: Chlorophyll fluorescence and photosynthesis: The basics.-Annu. Rev. Plant Physiol. Plant mol. Biol. 42: 319-349, 1991. Go to original source...
  25. Lawlor, D.W.: The effects of water deficit on photosynthesis.-In: Smirnoff, N. (ed.): Environment and Plant Metabolism: Flexibility and Acclimation. Pp. 129-160. Bios Scientific Publishers, Oxford 1995.
  26. Moreira, T., Henriques, F.S., Matos, M.C., Campos, P.: Protoplasmic drought resistance and water use efficiency.-Bull. Soc. Bot. Franc. 137: 81-89, 1990. Go to original source...
  27. Nir, I., Poljakoff-Mayber, A.: Effect of water stress on the photochemical activity of chloroplasts.-Nature 213: 418-419, 1967. Go to original source...
  28. Parry, M.A.J., Delgado, E., Vadell, J., Keys, A.J., Lawlor, D.W., Medrano, H.: Water stress and the diurnal activity of ribulose-1,5-bisphosphate carboxylase in field grown Nicotiana tabacum genotypes selected for survival at low CO2 concentrations.-Plant Physiol. Biochem. 31: 113-120, 1993.
  29. Ramalho, J.D., Chaves, M.M.: Drought effects on plant water relations and carbon gain in two lines of Lupinus albus L.-Eur. J. Agron. 1: 271-280, 1992. Go to original source...
  30. Rintamäki, E., Salo, R., Aro, E.M.: Rapid turnover of the D1 reaction-center protein of photosystem II as a protection mechanism against photoinhibition in a moss. Ceratodon purpureus (Hedw.) Brid.-Planta 193: 520-529, 1994. Go to original source...
  31. Schäfer, C., Schmidt, E.: Light acclimation potential and xanthophyll cycle pigments in photoautotrophic suspension cells of Chenopodium rubrum.-Physiol. Plant. 82: 440-448, 1991. Go to original source...
  32. Schindler, C., Lichtenthaler, H.K.: Is there a correlation between light-induced zeaxanthin accumulation and quenching of variable chlorophyll a fluorescence?-Plant Physiol. Biochem. 32: 813-822, 1994.
  33. Seel, W.E., Lee, J.A.: Photosynthesis and chlorophyll fluorescence in the desiccation tolerant sand dune moss Tortula ruraliformis.-Physiol. Plant. 79 (Part 2): 313, 1990.
  34. Sharkey, T.D., Seemann, J.R.: Mild water stress effects on carbon-reduction-cycle, intermediates, ribulose bisphosphate carboxylase activity, and spatial homogeneity of photosynthesis in intact leaves.-Plant Physiol. 89: 1060-1065, 1989. Go to original source...
  35. Stuhlfauth, T., Scheuermann, R., Fock, H.P.: Light energy dissipation under water stress conditions. Contribution of reassimilation and evidence for additional processes.-Plant Physiol. 92: 1053-1061, 1990. Go to original source...
  36. Van Kooten, O., Snell, J.F.H.: The use of chlorophyll fluorescence nomenclature in plant stress physiology.-Photosynth. Res. 25: 147-150, 1990. Go to original source...
  37. Vieira da Silva, J.B., Veltkamp, J.: Action du potentiel osmotique de la solution nutritive sur la reaction de Hill et la photophosphorylation de chloroplastes de Cotonnier.-Compt. rend. Acad. Sci. Paris, Sér. D 271: 1376-1379, 1970.