Skip to main content
Log in

Flexible Multibody Simulation and Choice of Shape Functions

  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The approach most widely used for the modelling of flexible bodies in multibody systems has been called the floating frame of reference formulation. In this methodology the flexible body motion is subdivided into a reference motion and deformation. The displacement field due to deformation is approximated by the Ritz method as a product of known shape functions and unknown coordinates depending on time only. The shape functions may be obtained using finite-element-models of flexible bodies in multibody systems, resulting in a detailed system representation and a high number of system equations. The number of system equations of such a nodal approach can be reduced considerably using a modal representation of deformation. This modal approach, however, leads to the fundamental problem of selecting the shape functions.

The floating frame of reference formulation is reviewed here using a generic flexible body model, from which the various body models used in multibody simulations may be derived by formulation of specific constraint equations. Special attention is given in this investigation to the following subjects:

• The separation of flexible body motion into a reference motion and deformation requires the definition of a body reference frame, which in turn affects the choice of shape functions. Some alternatives will be outlined together with their advantages and disadvantages.

• Assuming the body deformation to be small, the system equations can be linearized. This may require considering geometric stiffening terms. The problem of how to compute these terms has been solved in literature on the instability of structures under critical loads. For finite element models the geometric stiffening terms are obtained from the tangential stiffness matrix.

• The generality of the flexible body model allows the definition of an object oriented data base to describe the system bodies. Such a data base includes a general interface between multibody- and finite-element-codes.

• By combining eigenfunctions and static deformation modes to represent body deformation one obtains a set of so-called quasi-comparison functions. When selected properly these functions can be shown to improve the representation of stresses significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eich-Soellner, E. and Führer C., Numerical Methods in Multibody Dynamics, Teubner, Stuttgart, 1998.

    Google Scholar 

  2. Shabana, A. A., ‘Flexible multibody dynamics: review of past and recent developments’, Multibody System Dynamics 1, 1997, 189–222.

    Google Scholar 

  3. Koppens, W. P., Sauren, A. A., Veldpaus, F. E., and van Campen, D. H., ‘The dynamics of a deformable body experiencing large displacements’, Journal of Applied Mechanics 55, 1988, 676–680.

    Google Scholar 

  4. Shabana, A. A., ‘Resonance conditions and deformable body coordinate systems’, Journal of Sound and Vibration 192(1), 1996, 389–398.

    Google Scholar 

  5. Schwertassek, R. and Wallrapp, O., Dynamik flexibler Mehrkörpersysteme, Vieweg, Braunschweig, 1999.

    Google Scholar 

  6. Kane, T. R., Ryan, R. R., and Banerjee, A. K., ‘Dynamics of a cantilever beam attached to a moving base’, Journal of Guidance, Control, and Dynamics 10(2), 1987, 139–151.

    Google Scholar 

  7. Schwertassek, R., ‘Flexible bodies in multibody systems’, in Computational Methods in Mechanical Systems, J. Angeles and E. Zakhariev (eds.), Springer-Verlag, Berlin, 1997, pp. 329–363.

    Google Scholar 

  8. Prandtl, L., ‘Kipp-Erscheinungen - Ein Fall von instabilem elastischem Gleichgewicht’, Dissertation, Ludwigs-Maximilian Universität zu München, Sektion II der philosophischen Fakultät, 1899.

  9. Weidenhammer, F., ‘Gekoppelte Biegeschwingungen von Laufschaufeln im Fliehkraftfeld’, Ingenieur-Archiv 39, 1970, 281–292.

    Google Scholar 

  10. Truckenbrodt, A., Bewegungsverhalten und Regelung hybrider Mehrkörpersysteme mit Anwendung auf Industrieroboter, Fortschritt-Bericht VDI, Reihe 8: Meß-, Steuerungs-und Regelungstechnik, Nr. 33, VDI-Verlag, Düsseldorf, 1980.

  11. Bremer, H. and Pfeiffer, F., Elastische Mehrkörpersysteme, Teubner, Stuttgart, 1992.

    Google Scholar 

  12. Ritz, W., ‘Theorie der Transversalschwingungen einer quadratischen Platte mit freien Rändern’, Annalen der Physik IV, 1909, 737–786.

    Google Scholar 

  13. Courant, R. and Hilbert, D., Methoden der mathematischen Physik, Springer-Verlag, Berlin, 1968.

    Google Scholar 

  14. Veubeke, B. F., ‘The dynamics of flexible bodies’, International Journal of Engineering Sciences 14, 1976, 895–913.

    Google Scholar 

  15. Gylden, H., ‘Recherches sur la rotation de la Terre’, Actes de la Société Royale des Sciences d'Upsal, April 5, 1871, 1–21.

  16. Tisserand, F., Traite de Mechanique Celeste, Gauthier-Villars, Paris, 1891.

    Google Scholar 

  17. Canavin, J. R. and Likins, P.W., ‘Floating reference frames for flexible spacecraft’, in AIAA 15th Aerospace Sciences Meeting, Los Angeles, CA, 1977, Paper No. 77–66.

  18. Agrawal, O. P. and Shabana, A. A., ‘Application of deformable-body mean axis to flexible multibody system dynamics’, Computer Methods in Applied Mechanics and Engineering 56, 1986, 217–245.

    Google Scholar 

  19. Meirovitch, L. and Kwak, M. K., ‘Convergence of the classical Rayleigh-Ritz method and the finite element method’, AIAA Journal 28(8), 1990, 1509–1516.

    Google Scholar 

  20. Tychonoff, A. N. and Samarski, A. A., Differentialgleichungen der mathematischen Physik, Deutscher Verlag der Wissenschaften, Berlin, 1959.

    Google Scholar 

  21. Meirovitch, L. and Kwak, M. K., ‘On the modeling of flexible multi-body systems by the Rayleigh-Ritz method’, Paper presented at the AIAA Dynamics Specialists Conference, Long Beach, CA, April 1990.

  22. Meirovitch, L. and Hagedorn, P., ‘A new approach to the modelling of distributed non-self-adjoined systems’, Journal of Sound and Vibration 178(2), 1994, 227–241.

    Google Scholar 

  23. Hagedorn, P., ‘Quasi-comparison functions in the dynamics of elastic multibody systems’, in Dynamics and Control of Large Structures, Proceedings of the 8th VPI &SU Symposium, Blacksburg, VA, May 6–8, L. Meirovitch (ed.), 1991, pp. 97–108.

  24. Hagedorn, P., ‘The Rayleigh-Ritz method with quasi-comparison functions in nonself-adjoint problems’, Journal of Vibration and Acoustics 115, 1993, 280–284.

    Google Scholar 

  25. Schwertassek, R. and Rulka, W., ‘Aspects of efficient and reliable multibody system simulation’, in Real-Time Integration Methods for Mechanical System Simulation, E. J. Haug and R. C. Deyo (eds.), Springer-Verlag, Berlin, 1991, pp. 55–96.

    Google Scholar 

  26. Roberson, R. E. and Schwertassek, R., Dynamics of Multibody Systems, Springer-Verlag, Berlin, 1988.

    Google Scholar 

  27. Volterra, E., ‘The equations of motion for curved elastic bars deduced by the use of the 'method of internal constraints’, Ingenieur-Archiv XXIII, 1955, 402–409.

    Google Scholar 

  28. Volterra, E., ‘The equations of motion for curved and twisted elastic bars deduced by the use of the 'method of internal constraints’, Ingenieur-Archiv XXIV, 1956, 392–400.

    Google Scholar 

  29. Fung, Y. C., Foundations of Solid Mechanics, Prentice-Hall, Englewood Cliffs, NJ, 1965.

    Google Scholar 

  30. Washizu, K., Variational Methods in Elasticity and Plasticity, 3rd edition, Pergamon Press, Oxford, 1982.

    Google Scholar 

  31. Pascal, M., ‘Dynamics analysis of a system of hinge-connected flexible bodies’, Celestial Mechanics 41, 1988, 253–274.

    Google Scholar 

  32. Sachau, D., ‘Berücksichtigung von Körperverformung und Fügestellen in der Mehrkörpersimulation mit Anwendung auf aktive Raumfahrtstrukturen’, Dissertation, Universität Stuttgart, 1996.

  33. Padilla, C. E. and von Flotow, A. H., ‘Nonlinear strain-displacement relations and flexible multibody dynamics’, AIAA Journal of Guidance, Control and Dynamics 15, 1992, 128–136.

    Google Scholar 

  34. Banerjee, A. K. and Dickens, J.M., ‘Dynamics of an arbitrary flexible body in large rotation and translation’, AIAA Journal of Guidance, Control and Dynamics 13(2), 1990, 221–227.

    Google Scholar 

  35. Banerjee, A. K., ‘Block-diagonal equations for multibody elastodynamics with geometric stiffness and constraints’, AIAA Journal of Guidance, Control and Dynamics 16(6), 1993, 1092–1100.

    Google Scholar 

  36. Zienkiewicz, O. C. and Taylor, R. L., The Finite Element Method: Solid and Fluid Mechanics Dynamics and Non-linearity, Vol. 2, McGraw-Hill, London, 1991.

    Google Scholar 

  37. Otter, M., Hocke, M., and Leister, G., ‘An object oriented data model for multibody systems’, in Advanced Multibody System Dynamics - Simulation and Software Tools, W. Schiehlen (ed.), Kluwer, Dordrecht, 1993, pp. 19–48.

    Google Scholar 

  38. Wallrapp, O., ‘Standard input data of flexible members for multibody system codes’, in Advanced Multibody System Dynamics - Simulation and Software Tools, W. Schiehlen (ed.), Kluwer, Dordrecht, 1993, pp. 445–450.

    Google Scholar 

  39. Shames, I. H. and Dym, C. L., Energy and Finite Element Methods in Structural Mechanics, Hemisphere, New York, 1985.

    Google Scholar 

  40. Swanson-Analysis-System, ANSYS User's Manual for Rev. 5.0, Vol. I to IV, Swanson Analysis System, Houston, PA, 1992.

  41. Wallrapp, O., ‘Beam - A pre-processor for mode shape analysis of straight beam structures and generation of the SID file for MBS codes, User's manual’, Report Deutsche Forschungsanstalt für Luft-und Raumfahrt (DLR), Institut für Robotik und Systemdynamik, Oberpfaffenhofen, 1994.

    Google Scholar 

  42. Wallrapp, O., Eichberger, A., and Gerl, J., ‘FEMBS - An interface between FEM codes and MBS codes, User manual for ANSYS, NASTRAN, and ABAQUS’, Report INTEC GmbH, Wessling, 1997.

  43. Mangler, D., ‘Die Berechnung geometrisch nichtlinearer Probleme der Dynamik unter Nutzung linearer FEM-Programme’, Dissertation, Otto-von-Guericke-Universität, Magdeburg, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwertassek, R., Wallrapp, O. & Shabana, A.A. Flexible Multibody Simulation and Choice of Shape Functions. Nonlinear Dynamics 20, 361–380 (1999). https://doi.org/10.1023/A:1008314826838

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008314826838

Navigation