Skip to main content
Log in

Integrable nonlinear evolution equations and dynamical systems in multidimensions

  • Published:
Acta Applicandae Mathematica Aims and scope Submit manuscript

Abstract

The investigation of nonlinear evolution equations and dynamical systems integrable in multidimensions constitutes at present our main research interest. Here we survey findings obtained recently as well as over time: solvable equations (both PDEs and ODEs) are reported, philosophical motivations and methodological approaches are outlined. For more detailed treatments, including the display and analysis of solutions, the interested reader is referred to the original papers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Korteweg, D. J. and de Vries, G.: On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves,Phil. Mag. 39 (1895), 422–443.

    Google Scholar 

  2. Gardner, C. S., Greene, J. M., Kruskal, M. D., and Miura, R. ML: Method for solving the Korteweg-de Vries equation,Phys. Rev. Lett. 19 (1967), 1095–1097.

    Google Scholar 

  3. Zakharov, V. E. and Shabat, A. B.: Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media,Soviet Physics JETP 34 (1972), 62–69.

    Google Scholar 

  4. Ablowitz, M. J., Kaup, D. J., Newell, A. C., and Segur, H.: The inverse scattering transform-Fourier analysis for nonlinear problems,Stud. Appl. Math. 53 (1974), 249–315.

    Google Scholar 

  5. Zakharov, V. E., Takhtadzjan, L. A. and Faddeev, L. D.: A complete description of the solution of the sine-Gordon equation,Soviet Phys. Dokl. 19 (1975), 824–826.

    Google Scholar 

  6. Calogero, F: Why are certain nonlinear PDEs both widely applicable and integrable?, in: Zakharov, V. E. (Ed.)What is Integrabilityl, Springer, 1991, pp. 1–62.

  7. Lax, P. D.: Integrals of nonlinear equations of evolution and solitary waves,Commun. Pure Appl. Math. 21 (1968), 467–490.

    Google Scholar 

  8. Toda, M.: Vibration of a chain with nonlinear interaction,J. Phys. Soc. Japan 29 (1967), 431–436;

    Google Scholar 

  9. Toda, M.: Waves in nonlinear lattice,Prog. Theor. Phys. Suppl. 45 (1970), 174–200.

    Google Scholar 

  10. Calogero, F.: Solution of the one-dimensional N-body problem with quadratic and/or inversely-quadratic pair potentials,J. Math. Phys. 12 (1971), 419–436.

    Google Scholar 

  11. Manakov, S. V: Complete integrability and stochastization of discrete dynamical systems,Sov. Phys. JETP (1974), 269–274.

  12. Flaschka, H.: The Toda lattice. I and II,Phys. Rev. B9 (1974), 1924–1925 andProg. Theor. Phys. 51 (1974), 703–716.

    Google Scholar 

  13. Moser, J.: Three integrable Hamiltonian systems connected with isospectral deformations,Adv. in Math. 16 (1975), 197–220.

    Google Scholar 

  14. Calogero, F.: Exactly solvable one-dimensional many-body problems,Lett. Nuovo Cimento 13 (1975), 411–416;

    Google Scholar 

  15. Integrable dynamical systems and related mathematical results, in: Wolf, K. B. (Ed.)Nonlinear Phenomena, Lecture Notes in Physics189, Springer, 1983, pp. 47–109;

  16. Integrable dynamical systems and some other mathematical results (remarkable matrices, identities, basic hypergeometric functions), in: Winternitz, P. (Ed.)Systèmes Dynamiques Non Linéaires: Integrabilité et Comportement Qualitatif, Presse de l'Université de Montréal, SMS120, 1986, pp. 40–70;

  17. Calogero, F.: Remarks on certain integrable one-dimensional many-body problems,Physics Letters A183 (1993), 85–88.

    Google Scholar 

  18. Olshanetsky, M. A. and Perelomov, A. M.: Classical integrable finite-dimensional systems related to Lie algebras and Quantal integrable systems related to Lie algebras,Physics Reports 71 (1981), 313–400 and94 (1983), 313–404.

    Google Scholar 

  19. Kruskal, M. D.:Lectures in App. Math. 15 (1974), 61–83.

    Google Scholar 

  20. Thickstun, W. R.:J. Math. Anal. Appl. 55 (1976), 335.

    Google Scholar 

  21. Airault, H., McKean, H. P., and Moser, J.: Rational and elliptic solutions of the Korteweg-de Vries equation and a related many-body problem,Commun. Pure Appl. Math. 30 (1977), 95–148.

    Google Scholar 

  22. Choodnovsky, D. V. and Choodnovsky, G. V.: Pole expansions of nonlinear partial differential equations,Nuovo Cimento 40B (1977), 339–353.

    Google Scholar 

  23. Calogero, F.: Motion of poles and zeros of special solutions of nonlinear and linear partial differential equations and related ‘solvable’ many-body problems,Nuovo Cimento 43B (1978), 177–241.

    Google Scholar 

  24. Calogero, F.: A class of solvabe dynamical systems,Physica D18 (1986), 280–302.

    Google Scholar 

  25. Calogero, F.: A class of integrable dynamical systems,Inverse Problems 1 (1985), L21-L24.

    Google Scholar 

  26. Calogero, F.: A method to generate solvable nonlinear evolution equations,Lett. Nuovo Cimento 14 (1975), 443–448.

    Google Scholar 

  27. Calogero, F.: Integrable many-body problems in more than one dimension,Rep. Math. Phys. 24 (1986), 141–143.

    Google Scholar 

  28. Calogero, F. and Eckhaus, W.: Nonlinear evolution equations, rescalings, model PDEs and their integrability. I and II,Inverse Problems 3 (1987), 229–262 and4 (1988), 11–33.

    Google Scholar 

  29. Papers by Taniuti and others in:Suppl. Prog. Theor. Phys. 55,1974 (issue devoted to the ‘Reductive perturbation method for nonlinear wave propagation’).

  30. Eckhaus, W.: The long-time behaviour for perturbed wave-equations and related problems, preprint404, Department of Mathematics, University of Utrecht, December 1985, published in part inLectures Notes in Physics, Springer, 1986.

  31. Calogero, F.: Universal integrable nonlinear PDEs', in: P. A. Clarkson (ed.)Applications of Analytical and Geometrical Methods to Nonlinear Differential Equations, NATO ASI Series C: Mathematical and Physical Sciences, Vol. 413, Kluwer, 1993, pp. 109–114.

  32. Calogero, P.: C-integrable nonlinear partial differential equations in N+1 dimensions,J. Math. Phys. 33 (1992), 1257–1271.

    Google Scholar 

  33. Calogero, R.: Universal C-integrable nonlinear partial differential equation in N+1 dimensions,J. Math. Phys. 34 (1993), 3197–3209.

    Google Scholar 

  34. Calogero, F.: The evolution partial differential equationu t =U xxx +3(u xx u 2+3u 2 x u)+3u x u 4,J. Math. Phys. 28 (1987), 538–555.

    Google Scholar 

  35. Calogero, F. and De Lillo, S.: The Eckhaus PDE t +ψ xx + 2(¦ψ¦ 2) x ψ + ψ¦ 4 ψ=0,Inverse Problems 3 (1987), 633–681; Corrigendum:ibid. 4 (1988) 571.

    Google Scholar 

  36. Calogero, F.: Interpolation in multidimensions, a convenient finite-dimensional matrix representation of the (partial) differential operators, and some applications,J. Math. Phys. 34 (1993), 2704–4724.

    Google Scholar 

  37. Calogero, F. and Xiaoda, Ji: Solvable (nonrelativistic, classical)n-body problems in multidimensions. I & II,J. Math. Phys. 35 (1994), 710–733 and in M. Costato, A. Degasperis and D. Milani (eds),Nonlinear Dynamics, Conference Proceedings, Vol. 48, Pavullo nel Frignano, Italy, 19–22 May 1994, Soc. Italiana di Fisica, Bologna, 1995.

    Google Scholar 

  38. Calogero, F. and Xiaoda, Ji: Solvable (nonrelativistic, classical)n-body problems on the line. I,J. Math. Phys. 34 (1993), 5659–5670.

    Google Scholar 

  39. Arnold, V. I.:Mathematical Methods of Classical Mechanics, 2nd edn, Springer, p. 266.

  40. Jacobi, C: Problema trium corporum mutis attractionibus cubus distantiarum inverse proportionalibus recta linea se moventium, in:Gesammelte Werke, Bd. IV, Berlin, 1866.

  41. Calogero, F. and Degasperis, A.: Nonlinear evolution equations solvable by the inverse spectral transform. I and II,Nuovo Cimento 32B (1976), 201–242 and39B (1977), 1–54.Spectral Transform and Solitons: Tools to Solve and Investigate Nonlinear Evolution Equation, Vol. 1, North-Holland, 1982.

    Google Scholar 

  42. Calogero, F.: A class of C-integrable PDEs in multidimensions,Inverse Problems 10 (1994), 1231–1234.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

On leave while serving as Secretary General, Pugwash Conferences on Science and World Affairs, Geneva, London, Rome.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calogero, F. Integrable nonlinear evolution equations and dynamical systems in multidimensions. Acta Appl Math 39, 229–244 (1995). https://doi.org/10.1007/BF00994635

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00994635

Mathematics subject classifications (1991)

Key words

Navigation