Skip to main content
Log in

The integrated activities of IRF-2 (HiNF-M), CDP/cut (HiNF-D) and H4TF-2 (HiNF-P) regulate transcription of a cell cycle controlled human histone H4 gene: mechanistic differences between distinct H4 genes

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Maximal transcription of a prototypical cell cycle controlled histone H4 gene requires a proliferation-specific in vivo genomic protein/DNA interaction element, Site II. Three sequence-specific transcription factors interact with overlapping recognition motifs within Site II: interferon regulatory factor IRF-2 (HiNF-M), the putative H4 subtype-specific protein H4TF-2 (HiNF-P), and HiNF-D which represents a complex of the homeodomain protein CDP/cut, CDC2, cyclin A and pRB. However, natural sequence variation in the Site II sequences of different human H4 genes abolishes binding of specific trans-acting factors; the functional consequences of these variations have not been investigated. To address the precise contribution of H4 promoter factors to the level of H4 gene transcription, we performed a systematic mutational analysis of Site II transcriptional motifs. These mutants were tested for ability to bind each of the Site II cognate proteins, and subsequently evaluated for ability to confer H4 transcriptional activity using chimeric H4 promoter/CAT fusion constructs in different cell types. We also analyzed the effect of over-expressing IRF-2 on CAT reporter gene expression driven by mutant H4 promoters and assessed H4 transcriptional control in cells nullizygous for IRF-1 and IRF-2. Our results show that the recognition sequence for IRF-2 (HiNF-M) is the dominant component of Site II and modulates H4 gene transcription levels by 3 fold. However, the overlapping recognition sequences for IRF-2 (HiNF-M), H4TF-2 (HiNF-P) and CDP/cut (HiNF-D) together modulate H4 gene transcription levels by at least an order of magnitude. Thus, maximal activation of H4 gene transcription during the cell cycle in vivo requires the integrated activities of multiple transcription factors at Site II. We postulate that the composite organization of Site II supports responsiveness to multiple signalling pathways modulating the activities of H4 gene transcription factors during the cell cycle. Variations in Site II sequences among different H4 genes may accomodate differential regulation of H4 gene expression in cells and tissues with unique phenotypic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stein GS, Stein JL & Marzluff, WF (eds) (1984), Histone Genes, John Wiley & Sons, New York

  2. Osley MA (1991) Annu. Rev. Biochem. 60: 827–861

    PubMed  Google Scholar 

  3. Wolfe SA & Grimes SR (1993) J. Cell Biochem. 53: 156–160

    PubMed  Google Scholar 

  4. Doenecke D, Albig W, Bouterfa H & Drabent B (1994) J. Cell. Biochem. 54: 423–431

    PubMed  Google Scholar 

  5. Bouterfa HL, Piedrafita, FJ, Doenecke D & Pfahl M (1995) DNA Cell Biol. 14: 909–919

    PubMed  Google Scholar 

  6. Eilers A, Bouterfa H, Triebe S & Doenecke D (1994) Eur. J. Biochem. 223: 567–574

    PubMed  Google Scholar 

  7. Wolfe SA, van Wert JM & Grimes, SR (1995) Biochem. 34: 12461–12469

    Google Scholar 

  8. Duncliffe KN, Rondahl ME & Wells JR (1995) Gene 163: 227–232

    PubMed  Google Scholar 

  9. Bauer–Hofmann R & Alonso A (1995) Nucleic Acids Res. 23: 5034–5040

    PubMed  Google Scholar 

  10. Sun JM, Ferraiuolo R & Davie JR (1996) Chromosoma 104: 504–510

    PubMed  Google Scholar 

  11. Sun JM, Penner CG & Davie JR (1993) FEBS Lett. 331: 141–144

    PubMed  Google Scholar 

  12. Kaludov NK, Pabon–Pena L & Hurt MM(1996) Nucleic Acids Res. 24: 523–531

    PubMed  Google Scholar 

  13. Bowman TL & Hurt MM (1995) Nucleic Acids Res. 23: 3083–3092

    PubMed  Google Scholar 

  14. Ivanova VS, Hatch CL & Bonner WM (1994) J. Biol. Chem. 269: 24189–24194

    PubMed  Google Scholar 

  15. Hatch CL & Bonner WM (1995) DNA Cell Biol. 14: 257–266

    PubMed  Google Scholar 

  16. Naeve GS, Zhou Y & Lee AS (1995) Nucleic Acids Res. 23: 475–484

    PubMed  Google Scholar 

  17. Takami Y & Nakayama T (1995) Biochim. Biophys. Acta 1264: 29–34

    PubMed  Google Scholar 

  18. Oswald F, Dobner T & Lipp M (1996) Mol. Cell Biol. 16: 1889–1895

    PubMed  Google Scholar 

  19. el–Hodiri HM & Perry M (1995) Mol. Cell Biol. 15: 3587–3596

    Google Scholar 

  20. Hinkley C & Perry M (1992) Mol. Cell Biol. 12: 4400–4411

    PubMed  Google Scholar 

  21. Martinelli R & Heintz N (1994) Mol. Cell Biol. 14: 8322–8332

    PubMed  Google Scholar 

  22. Stein GS, Stein JL, van Wijnen AJ & Lian JB (1994) J. Cell Biochem. 54: 393–404

    PubMed  Google Scholar 

  23. Albig W, Kardalinou E, Drabent B, Zimmer A & Doenecke D (1991) Genomics 10: 940–948

    PubMed  Google Scholar 

  24. Drabent B, Kardalinou E, Bode C & Doenecke D (1995) DNA Cell Biol. 14: 591–597

    PubMed  Google Scholar 

  25. Plumb M, Stein J & Stein G (1983) Nucleic Acids Res. 11: 2391–2410

    PubMed  Google Scholar 

  26. Ramsey–Ewing AL, van Wijnen AJ, Stein GS & Stein JL (1994) Proc. Natl. Acad. Sci. USA 91: 4475–4479

    PubMed  Google Scholar 

  27. Kroeger P, Stewart C, Schaap T, van Wijnen A, Hirshman J, Helms S, Stein G & Stein J (1987) Proc. Natl. Acad. Sci. USA 84: 3982–3986

    PubMed  Google Scholar 

  28. Kroeger PE, van Wijnen AJ, Pauli U, Wright KL, Stein GS & Stein JL (1994) J. Cell Biochem. 57: 191–207

    Google Scholar 

  29. Wright KL, Birnbaum MJ, van Wijnen AJ, Stein GS & Stein JL (1995) J. Cell Biochem. 58: 372–379

    PubMed  Google Scholar 

  30. Birnbaum MJ, Wright KL, vanWijnen AJ, Ramsey-Ewing AL, Bourke MT, Last TJ, Aziz F, Frenkel B, Rao BR, Aronin N, Stein GS & Stein JL (1994) Biochem. 34: 7648–7658

    Google Scholar 

  31. Pauli U, Chrysogelos S, Stein G, Stein J & Nick H (1987) Science 236: 1308–1311

    PubMed  Google Scholar 

  32. vanWijnen AJ, Ramsey–Ewing AL, Bortell R, Owen TA, Lian JB, Stein JL & Stein GS (1991) J. Cell Biochem. 46: 174–189

    PubMed  Google Scholar 

  33. van Wijnen AJ, van den Ent FMI, Lian JB, Stein JL & Stein GS (1992) Mol. Cell Biol. 12: 3273–3287

    PubMed  Google Scholar 

  34. Shakoori R, van Wijnen AJ, Cooper C, Aziz F, Birnbaum M, Reddy GPV, DeLuca A, Grana X, Giordano A, Lian JB, Stein JL, Quesenberry P & Stein GS (1995) J. Cell Biochem. 59: 291–302

    PubMed  Google Scholar 

  35. van den Ent FMI, van Wijnen AJ, Lian JB, Stein JL & Stein GS (1993) Cancer Res. 53: 2399–2409

    PubMed  Google Scholar 

  36. Vaughan PS, Aziz F, van Wijnen AJ, Wu S, Harada H, Taniguchi T, Soprano KJ, Stein JL & Stein GS (1995) Nature 377: 362–365

    PubMed  Google Scholar 

  37. Tanaka N, Kawakami T & Taniguchi T (1993) Mol. Cell Biol. 13: 4531–4538

    PubMed  Google Scholar 

  38. Dailey L, Roberts SB & Heintz N (1988) Genes Dev. 2: 1700–1712

    PubMed  Google Scholar 

  39. van Wijnen AJ, Aziz F, Grana X, DeLuca A, Desai RK, Jaarsveld K, Last TJ, Soprano K, Giordano A, Lian JB, Stein JL & Stein GS (1994) Proc. Natl. Acad. Sci. USA 91: 12882–12886

    PubMed  Google Scholar 

  40. van Wijnen AJ, van Gurp MF, de Ridder M, Tufarelli C, Last TJ, Birnbaum M, Vaughan PS, Giordano A, Krek W, Neufeld EJ, Stein JL & Stein GS (1996) Proc. Natl. Acad. Sci. USA 93: 11516–11521

    PubMed  Google Scholar 

  41. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (eds)(1987): Current Protocols in Molecular Biology New York: John Wiley & Sons, Inc

    Google Scholar 

  42. LaBella F, Sive HL, Roeder HG & Heintz N(1988) Genes Dev. 2: 32–39

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aziz, F., van Wijnen, A.J., Vaughan, P.S. et al. The integrated activities of IRF-2 (HiNF-M), CDP/cut (HiNF-D) and H4TF-2 (HiNF-P) regulate transcription of a cell cycle controlled human histone H4 gene: mechanistic differences between distinct H4 genes. Mol Biol Rep 25, 1–12 (1998). https://doi.org/10.1023/A:1006888731301

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006888731301

Navigation