Skip to main content
Log in

Proteasome (prosome) associated endonuclease activity

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The 20S proteasome (prosome) is a highly organized multiprotein complex with approximate molecular weight of about 700 kDa. Whilst the role of the proteasome in the processing and turnover of cellular proteins is becoming clearer, its relationship with RNA remains still obscure. Here we focus on the nature and function of proteasome associated endonuclease activity. Thus the involvement of a proteasome α-type subunit in RNA-degradation, the catalytic requirements, the interaction of proteasomes with their RNA-substrate and the identification of a well defined cleavage site in the 3-UTR of short-lived cellular mRNAs will be described in detail. All data indicate that proteasomes associated endonuclease activity could be involved in post-transcriptional gene control at the level of translation. Abbreviations: Hu – human; Mu – murine; β IFN – fibroblast interferon; γ IFN – lymphoblast interferon; c FOS – fos proto-oncogene; G-CSF – granulocyte colony stimulating factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schmid HP, Akhayat O, Martins de Sa C, Puvion F, Köhler K & Scherrer K (1984) EMBO J. 3: 29—34

    Google Scholar 

  2. Martins de Sa C, Grossi de Sa MF, Akhayat O, Broders F, Scherrer K, Horsch A & Schmid HP (1986) J. Mol. Biol. 187: 479—493

    Google Scholar 

  3. Schliephacke M, Kremp A, Schmid HP, Köhler K & Kull U (1991) Eur. J. Cell Biol. 55: 114—121

    Google Scholar 

  4. Grziwa A, Baumeister W, Dahlmann B & Kopp F (1991) FEBS Lett. 290: 186—190

    Google Scholar 

  5. Heinemeyer W, Kleinschmidt JA, Saidowsky J, Escher C & Wolf DH (1991) EMBO J. 10: 555—562

    Google Scholar 

  6. Tanaka K, Tamura T, Yoshimura T & Ichihara A (1992) New Biol 4: 173—187

    Google Scholar 

  7. Rivett AJ (1993) Biochem. J. 291: 1—10

    Google Scholar 

  8. Tamura T, Nagy J, Lupas A, Lottspeich F, Cejka Z, Schoofs G, Tanaka K, Demot R & Baumeister W (1995) Current Biol. 5: 766—774

    Google Scholar 

  9. Arrigo AP, Tanaka K, Goldberg AL& Welch WJ (1988) Nature 331: 192—194

    Google Scholar 

  10. Wilk S & Orlowski M (1983) J. Neurochem. 40: 842—849

    Google Scholar 

  11. Hough R, Pratt G & Rechsteiner M (1987) J Biol Chem 262: 8303—8313

    Google Scholar 

  12. Driscoll J & Goldberg AL (1990) J Biol Chem 265: 4789—4792

    Google Scholar 

  13. Peters JM, Cejka Z, Harris JR, Kleinschmidt JA & Baumeister W (1993) J. Mol. Biol. 234: 932—937

    Google Scholar 

  14. Eytan E, Gannoth D, Armon T & Hershko A (1989) Proc. Natl. Acad. Sci. USA 86: 7751—7755

    Google Scholar 

  15. Ciechanover A (1994) Cell 79: 13—21

    Google Scholar 

  16. Gordon C, Mc Gurk G, Dillon P, Rosen C & Hastie ND (1993) Nature 366: 355—357

    Google Scholar 

  17. Ghislain M, Udvardy A & Mann C (1993) Nature 366: 358—361

    Google Scholar 

  18. Richter—Ruoff B, Wolf DH & Hochstrasser M (1994) FEBS Lett. 354: 50—52

    Google Scholar 

  19. Orian A, Whiteside S, Israel A, Stancovski I, Schwartz AL & Ciechanover A (1995) J. Biol. Chem 270: 21 707—21 714

    Google Scholar 

  20. Goldberg AL & Rock KL (1992) Nature 357: 375—378

    Google Scholar 

  21. Belich MP & Trowsdale J (1995) Mol. Biol. Rep. 21: 53—56

    Google Scholar 

  22. Horsch A, Martins de Sa, Dineva B, Spindler E & Schmid HP (1987) FEBS Lett. 246: 131—136

    Google Scholar 

  23. Homma S, Horsch A, Pouch MN, Petit F, Briand Y & Schmid HP (1994) Mol. Biol. Rep. 20: 57—61

    Google Scholar 

  24. Pouch MN, Petit F, Buri J, Briand Y & Schmid HP (1995) J. Biol. Chem. 270: 22 023—22 028

    Google Scholar 

  25. Petit F, Jarrousse AS, Dahlmann B, Sobek A, Hendil KB, Buri J, Briand Y & Schmid HP (1997) Biochem. J. (revised version, submitted)

  26. Schmid HP, Pouch MN, Petit F, Dadet MH, Badaoui S, Boissonnet G, Buri J, Norris V & Briand Y (1995) Mol. Biol. Rep. 21: 43—47

    Google Scholar 

  27. Pamnani V, Haas B, Pühler G, Sänger HL & Baumeister W (1994) Eur. J. Biochem. 225: 511—519

    Google Scholar 

  28. Arrigo AP, Darlix JL, Khandjian EW, Simon M & Spahr PF (1985) EMBO J. 4: 399—406

    Google Scholar 

  29. Nothwang HG, Coux O, Keith G, Silva—Pereira I & Scherrer K (1992) Nucl. Acids Res. 201: 1959—1965

    Google Scholar 

  30. Horsch A, Köhler K, Ellwart—Tschürz M & Schmid HP (1990) FEBS Lett. 269: 336—340

    Google Scholar 

  31. Jarrousse AS, Pouch MN, Bechet D, Tomek W, Ferrara M, Briand Y & Schmid HP (1997) (submitted)

  32. Sachs AB (1993) Cell 74: 413—421

    Google Scholar 

  33. Shaw G & Kamen R (1986) Cell 46: 659—667

    Google Scholar 

  34. Zubiaga AM, Belasco JG & Greenberg ME (1995) Mol. Cell Biol. 2219—2230

  35. Shyu AB, Greenberg ME & Belasco JG (1989) Genes Dev 3: 60—72

    Google Scholar 

  36. Peppel K, Vinci JM & Baglioni C (1991) J. Exp. Med. 173: 349—355

    Google Scholar 

  37. Brown JM & Beuthler B (1990) J. Exp. Med. 171: 465—475

    Google Scholar 

  38. Jarrousse AS. Submitted for publication

  39. Savant—Bhonsale S & Cleveland DW (1992) Genes Dev. 6: 1927—1939

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petit, F., Jarrousse, AS., Boissonnet, G. et al. Proteasome (prosome) associated endonuclease activity. Mol Biol Rep 24, 113–117 (1997). https://doi.org/10.1023/A:1006886911852

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006886911852

Navigation