Skip to main content
Log in

On the Riemannian metric of α-entropies of density matrices

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

The Riemannian metric induced by quantum α-entropies is proven to be monotone under stochastic mappings on the set of density matrices. The length of tangent vectors is essentially the Wigner-Yanase-Dyson skew information in this setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. BalianR., AlhassidY. and ReinhardtH.: Dissipation in many-body systems: A geometric approach based on information theory, Phys. Rep. 131 (1986), 1–146.

    Article  Google Scholar 

  2. BraunsteinS. L. and CavesC. M.: Statistical distance and the geometry of quantum states, Phys. Rev. Lett. 72 (1994), 3439–3443.

    Article  Google Scholar 

  3. ČencovN. N.: Statistical Decision Rules and Optimal Inferences, Amer. Math. Soc., Providence, 1982.

    Google Scholar 

  4. Dittmann, J., On the Riemannian metric on the space of density matrices, Universität Leipzig, NTZ-Preprint No. 12/1995.

  5. HasegawaH.: α-divergence of the non-commutative information geometry, Rep. Math. Phys. 33 (1993), 87–93.

    Article  Google Scholar 

  6. HasegawaH.: Non-commutative extension of the information geometry, in: V. P.Belavkin, O.Hirota and R. L.Hudson (eds), Proc. Intern. Workshop on Quantum Communications and Measurement, Nottingham 1994, Plenum, New York, 1995.

    Google Scholar 

  7. Hiai, F., Petz, D. and Toth, G.: Curvature in the geometry of canonical correlation, to be published in Studia Sci. Math.

  8. IngardenR. S., JanyszekH., KossakowskiA. and KawaguchiT.: Information geometry and quantum statistical systems, Tensor N.S. 37 (1982), 105–111.

    Google Scholar 

  9. LiebE. H.: Convex trace functions and the Wigner-Yanase-Dyson conjecture, Adv. in Math. 11 (1973), 267–288.

    Google Scholar 

  10. MorozovaE. A. and ČencovN. N.: Markovian invariant geometry on manifolds of states (Russian), Itogi Nauki i Tehniki 36 (1990), 69–102.

    Google Scholar 

  11. NagaokaH.: A new approach to Cramér-Rao bounds for quantum state estimation, IEICE Technical Report, 89 (1989), No. 228, IT89-42, 9–14.

    Google Scholar 

  12. OhyaM. and PetzD.: Quantum Entropy and Its Use, Springer-Verlag, Heildelberg, 1993.

    Google Scholar 

  13. PetzD.: Geometry of canonical correlation on the state space of a quantum system, J. Math. Phys. 35 (1994), 780–795.

    Article  Google Scholar 

  14. Petz, D.: Monotone metrics on matrix spaces, to appear in Linear Algebra Appl.

  15. Petz, D. and Sudár, Cs.: Geometries of quantum states, Preprint ESI 204, Vienna, 1995.

  16. PetzD. and TothG.: The Bogoliubov inner product in quantum statistics, Lett. Math. Phys. 27 (1993), 205–216.

    Google Scholar 

  17. Sudár, Cs.: Radial extension of monotone Riemannian metrics on density matrices, to be published in: Publ. Math. Debrecen.

  18. UhlmannA.: The metric Bures and the geometric phase, in R.Gielerak et al. (ed.), Groups and Related Topics, Kluwer Acad. Publ., Dordrecht, 1992, pp. 267–274.

    Google Scholar 

  19. UhlmannA.: Density operators as an arena for differential geometry, Rep. Math. Phys. 33 (1993), 253–263.

    Article  Google Scholar 

  20. WignerE. P. and YanaseM. M.: Information content of distributions, Proc. Nat. Acad. Sci. USA 49 (1963), 910–918.

    Google Scholar 

  21. YuenH. P. H. and LaxM.: Multiple parameter quantum estimation and measurement of non-selfadjoint observables, IEEE Trans. IT-19 (1973), 740–750.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the Hungarian National Foundation for Scientific Research, grant No. T-016924.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petz, D., Hasegawa, H. On the Riemannian metric of α-entropies of density matrices. Lett Math Phys 38, 221–225 (1996). https://doi.org/10.1007/BF00398324

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00398324

Mathematics Subject Classification (1991)

Key words

Navigation