Skip to main content
Log in

Resistivity measurements of an ocean floor sulphide mineral deposit from the submersible Cyana

  • Published:
Marine Geophysical Researches Aims and scope Submit manuscript

Abstract

Electrical resistivity measurements of the sea bed have been made from the submersible Cyana at four locations on a seamount close to the axis of the East Pacific Rise. Two of the sites were on a major sulpide deposit close to the top of the seamount, and the other two on pillow basalts near its base. The resistivity of the pillow-lava terrain was found to be about forty times greater than that of the sea water, in good agreement with downhole logging measurements in DSDP drill holes. The resistivity of the sulphide bottom was one to two orders of magnitude less than that of the pillow basalts. At one site the sea bed was almost twice as conductive as the overlying sea water and the deposit at this location is estimated to be about 9 m thick.

Self-potentials of up to 10 mV, measured between a pair of electrodes 10 m apart, were associated with the sulphide deposit but were undetectable (i.e.≤0.1 mV) on the pillow basalts. The largest SP was associated with the most conductive sea bed, i.e. with the greatest concentration of sulphides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anon: 1981, ‘$2 Billion Ore Deposit Found’, EOS 62, (46), 1146.

  • Archie G. E.: 1942, ‘The Electrical Resistivity Log as an Aid in Determining some Reservoir Characteristics’, Trans. A.I.M.E. 146, 54–62.

    Google Scholar 

  • Ballard R. D. and Francheteau J.: 1982, ‘The Relationship Between Active Sulfide Deposition and the Axial Processes of the Mid-Ocean Ridge’, Marine Technol. Soc. Jour. 16, (3), 8–22.

    Google Scholar 

  • Ballard R. D., Hekinian R., and Francheteau J.: 1984, ‘Geological Setting of Hydrothermal Activity at 12°50′ N on the East Pacific Rise: A Submersible Study’, Earth Planet. Sci. Lett. 69, 176–186.

    Google Scholar 

  • Becker K., VonHerzen R. P., Francis T. J. G., Anderson R. N., Honnorez J., Adamson A. C., Alt J. C., Emmerman R., Kempton P. D., Kinoshita H., Laverne C., Mottl M. J., and Newmark R. L.: 1982, ‘In situ Electrical Resistivity and Bulk Porosity of the Oceanic Crust Costa Rica Rift’, Nature 300, 594–598.

    Google Scholar 

  • Becker K.: 1985, ‘Large-Scale Electrical Resistivity and Bulk Porosity of the Oceanic Crust, Hole 504B, Costa Rica Rift’, Init. Reports DSDP, 83, Washington (U.S. Govt. Printing Office), 419–427.

    Google Scholar 

  • Bosschart R. A.: 1961, ‘On the Occurrence of Low Resistivity Geological Conductors’, Geophys. Prospect 9, 203–212.

    Google Scholar 

  • Broecker W. S., Spencer D. W., and Craig H.: 1982, Geosecs Pacific Expedition, Vol. 3, Hydrographic Data 1973–74, U.S. Government Printing Office, Washington, D.C.

    Google Scholar 

  • Cann J. R.: 1980, ‘Availability of Sulphide Ores in the Ocean Crust’, J. Geol. Soc. London 137, 381–384.

    Google Scholar 

  • Choukroune P., Francheteau J., and Hekinian R.: 1984, ‘Tectonics of the East Pacific Rise near 12°50′ N: A Submersible Study’, Earth Planet. Sci. Lett. 68, (1), 115–127.

    Google Scholar 

  • Cyamex: 1978, ‘Découverte par Submersible de Sulfures Polymétalliques Massifs sur la Dorsale du Pacifique Oriental par 21°N (project RITA)’, C. R. Ac. Sci. Paris, Ser. D., 287, 1365–1368.

    Google Scholar 

  • Cyamex Scientific Team: 1979, ‘Massive Deep-Sea Sulphide Ore Deposits Discovered on the East Pacific Rise’, Nature 277, 523–528.

    Google Scholar 

  • Francheteau J. and Ballard R. D.: 1983, ‘The East Pacific Rise near 21°N, 13°N and 20°S, Inferences for Along-Strike Variability of Axial Processes of the Mid-Ocean Ridge’, Earth Planet. Sci. Lett. 64, 93–116.

    Google Scholar 

  • Francis, T.J.G.: 1977, ‘Electrical Prospecting on the Continental Shelf’, Rep. Inst. Geol. Sci., No. 77/4, 41 pp.

  • Francis T.J.G.: 1981, ‘Large-Scale Resistivity Experiment in DSDP Hole 459B’, Init. Repts. DSDP. 60, Washington (U.S. Govt. Printing Office), 841–852.

    Google Scholar 

  • Francis T. J. G.: 1984, ‘Geophysical Assessment of Sulphide Ore Bodies on Mid-Ocean Ridges’, Proceedings Oceanology International '84, Spearhead Publications, Kingston-upon-Thames, England, paper 2.8, 8 pp.

    Google Scholar 

  • Hekinian R., Avedik F., Bideau D., Fouquet Y., Francis T. J. G., Franklin J. M., and Nesteroff W. D.: 1984, ‘Geological Investigations of Axial and Off-Axial Structures in the Northeastern Pacific Ocean: A Submersible Study’, Nature 311, 606.

    Google Scholar 

  • Hekinian R., Fevrier M., Avedik F., Cambon P., Charlou J. L., Needham H. D., Raillard J. Boulegue J., Merlivat L., Moinet A., Manganini S., and Lange J.: 1983a, ‘East Pacific Rise near 13°N: Geology of New Hydrothermal Fields’, Science 219, 1321–1324.

    Google Scholar 

  • Hekinian R., Francheteau F., Renard V., Ballard R. D., Choukroune P., Cheminee J.L. Albarede F., Minster J. F., Charlou J. L., Marty J. C., and Boulegue J.: 1983b, ‘Intense Hydrothermal Activity at the Axis of the East Pacific Rise near 13° N: Submersible Witnesses the Growth of Sulfide Chimney’, Marine Geophys. Res. 6, 1–14.

    Google Scholar 

  • Keller, G. V.: 1966, ‘Electrical Properties of Rocks and Minerals’, in Clark, S. P. Jr. (ed.), Handbook of Physical Constants, Mem. Geol. Soc. Amer. 97, pp. 553–577.

  • Lonsdale P., Batiza R., and Simkin T.: 1982, ‘Metallogenesis at Seamounts on the East Pacific Rise’, Marine Technol. Soc. Jour. 16, (3), 54–61.

    Google Scholar 

  • Macdonald K. C.: 1982, ‘Geophysical Settings for Hydrothermal Vents and Mineral Deposits on the East Pacific Rise’, Marine Technol. Soc. Jour. 16, (13), 26–32.

    Google Scholar 

  • Moon P. and Spencer D. E.: 1961, Field Theory for Engineers, New York, Van Nostrand.

    Google Scholar 

  • Mooney H. and Wetzel G.: 1956, The Potentials about a Point Probe in a Two-, Three-, and Four-Layered Earth, Minneapolis, University of Minnesota Press.

    Google Scholar 

  • Parasnis D. S.: 1956, ‘The Electrical Resistivity of Some Sulphide and Oxide Minerals and Their Ores’, Geophys. Propect 4, 249–278.

    Google Scholar 

  • Parasnis D. S.: 1962, Principles of Applied Geophysics, London, Methuen.

    Google Scholar 

  • Rona P. A.: 1982, ‘Polymetallic Sulfides at Sea Floor Spreading Centers: A Global Overview’, Marine Technol. Soc. Jour. 16, (3), 81–86.

    Google Scholar 

  • Telford, W. M., Geldart, L. P., Sheriff, R. E., and Keys, D. A.: 1976, Applied Geophysics, Cambridge University Press.

  • UNESCO, 1981: Background Papers and Supporting Data on the Practical Salinity Scale 1978, UNESCO Tech. Papers Marine Sci., No. 37, 144 pp.

  • VonHerzen R. P., Francis T. J. G., and Becker K.: 1983, ‘In situ Large-Scale Electrical Resistivity of Ocean Crust, Hole 504B’, Init. Repts. DSDP, 69, Washington (U.S. Govt. Printing Office), 237–244.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Francis, T.J.G. Resistivity measurements of an ocean floor sulphide mineral deposit from the submersible Cyana. Mar Geophys Res 7, 419–437 (1985). https://doi.org/10.1007/BF00316778

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00316778

Keywords

Navigation