Skip to main content
Log in

Tectonics of an extinct ridge-transform intersection, Drake Passage (Antarctica)

  • Published:
Marine Geophysical Researches Aims and scope Submit manuscript

Abstract

New swath bathymetric, multichannel seismic and magnetic data reveal the complexity of the intersection between the extinct West Scotia Ridge (WSR) and the Shackleton Fracture Zone (SFZ), a first-order NW-SE trending high-relief ridge cutting across the Drake Passage. The SFZ is composed of shallow, ridge segments and depressions, largely parallel to the fracture zone with an `en echelon' pattern in plan view. These features are bounded by tectonic lineaments, interpreted as faults. The axial valley of the spreading center intersects the fracture zone in a complex area of deformation, where N120° E lineaments and E–W faults anastomose on both sides of the intersection. The fracture zone developed within an extensional regime, which facilitated the formation of oceanic transverse ridges parallel to the fracture zone and depressions attributed to pull-apart basins, bounded by normal and strike-slip faults.

On the multichannel seismic (MCS) profiles, the igneous crust is well stratified, with numerous discontinuous high-amplitude reflectors and many irregular diffractions at the top, and a thicker layer below. The latter has sparse and weak reflectors, although it locally contains strong, dipping reflections. A bright, slightly undulating reflector observed below the spreading center axial valley at about 0.75 s (twt) depth in the igneous crust is interpreted as an indication of the relict axial magma chamber. Deep, high-amplitude subhorizontal and slightly dipping reflections are observed between 1.8 and 3.2 s (twt) below sea floor, but are preferentially located at about 2.8–3.0 s (twt) depth. Where these reflections are more continuous they may represent the Mohorovicic seismic discontinuity. More locally, short (2–3 km long), very high-amplitude reflections observed at 3.6 and 4.3 s (twt) depth below sea floor are attributed to an interlayered upper mantle transition zone. The MCS profiles also show a pattern of regularly spaced, steep-inclined reflectors, which cut across layers 2 and 3 of the oceanic crust. These reflectors are attributed to deformation under a transpressional regime that developed along the SFZ, shortly after spreading ceased at the WSR. Magnetic anomalies 5 to 5 E may be confidently identified on the flanks of the WSR. Our spreading model assumes slow rates (ca. 10–20 mm/yr), with slight asymmetries favoring the southeastern flank between 5C and 5, and the northwestern flank between 5 and extinction. The spreading rate asymmetry means that accretion was slower during formation of the steeper, shallower, southeastern flank than of the northwestern flank.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aldaya, F. and Maldonado, A., 1996, Tectonics of the triple junction at the southern end of the Shackleton Fracture Zone (Antarctic Peninsula), Geo-Mar. Lett. 16: 279–286.

    Google Scholar 

  • Banda, E., Ranero, C.R., Dañobeitia, J.J. and Rivero A., 1992, Seismic boundaries of the eastern central Atlantic Mesozoic crust from multichannel seismic data, Geol. Soc. Am. Bull. 104: 1340–1349.

    Google Scholar 

  • Barth, G.A., 1994, Ocean crust thickens approaching the Clipperton fracture zone, Mar. Geophys. Res. 16: 51–64.

    Google Scholar 

  • Barker, P.F. and Burrell, wJ., 1977, The opening of Drake Passage, Mar. Geol. 25: 15–34.

    Google Scholar 

  • Barker, P.F., Dalziel, I.W.D. and Storey, B.C., 1991, Tectonic development of the Scotia Arc region, in R.J. Tingey (ed.), Antarctic Geology, Oxford University Press, Oxford, pp. 215–248.

    Google Scholar 

  • BAS 1985, Tectonic Map of the Scotia Arc, Sheet (Misc) 3, Scale 1: 3 000 000, British Antarctic Survey, Cambridge.

    Google Scholar 

  • Bown, J.W. and White, R.S., 1994, Variation with spreading rate of oceanic crustal thickness and geochemistry, Earth Planet. Sci. Lett. 121: 435–449.

    Google Scholar 

  • Cande, S.C. and Kent, D.V., 1995, Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic, J. Geophys. Res. 100: 6093–6095.

    Google Scholar 

  • Cannat, M., 1993, Emplacement of mantle rocks in the seafloor at mid-ocean ridges, J. Geophys. Res. 98: 4163–4172.

    Google Scholar 

  • Cannat, M., Karson, J.A., Miller, D.J. et al., 1995, Proceedings Ocean Drilling Program leg 153, Init. Rep., College Station, TX (Ocean Drilling Program), pp. 5–13.

  • Caress, D.W. and Chayes, D.N., 1996. Improved processing of Hydrosweep DS multibeam data on the R/V Maurice Ewing. Mar. Geophys. Res. 18: 631–650.

    Google Scholar 

  • Carbotte, S.M. and MacDonald, K.C., 1994, Comparison of seafloor tectonic fabric at intermediate, fast, and superfast spreading ridges; influence of spreading rate, plate motions, and ridge segmentation in fault patterns, J. Geophys. Res. 99: 13609–13631.

    Google Scholar 

  • Carbotte, S.M., Mutter, C., Mutter, J. and Ponce-Correa, G., 1998, Influence of magma supply and spreading rate on crustal magma bodies and emplacement of the extrusive layer: insights from the East Pacific Rise at lat 16° N, Geology 26: 455–458.

    Google Scholar 

  • Collier, J.S, J. Dañobeitia, J.J. and CD82 Scientific Party, 1997, Evidence of asymmetric accretion an low-angle, planar faults in slow-spreading oceanic crust, Geology 25: 1075–1078

    Google Scholar 

  • Cunningham, W.D., Dalziel, I.W.D., Lee, T.Y. and Lawver, L.A., 1995, Southernmost South America-Antarctic Peninsula relative plate motions since 84 Ma: Implications for the tectonic evolution of the Scotia Arc region. J. Geophys. Res. 100: 8257–8266.

    Google Scholar 

  • Detrick, R.S., Harding, A.J., Kent, G.M., Orcutt, J.A., Mutter, J.C. and Buhl, P., 1993, Seismic structure of the southern East Pacific Rise, Science 259: 499–503.

    Google Scholar 

  • Dick, H.J.B., 1996, Hess versus Penrose: What is the composition of the lower ocean crust?, Eos, Trans. AGU 77: S275.

    Google Scholar 

  • Dick, H.J.B., Schouten, H., Meyer, P.S., Gallo, D.G., Berg, H., Tyce, R., Patriat, P., Johnson, K., Snow, J. and Fisher, A., 1991, Tectonic evolution of the Atlantis II Fracture Zone, in R.P. Von Herzen, P.T. Robinson, et al. (eds), Proceedings Ocean Drilling Program Leg 118. Int. Rep. College Station, TX (Ocean Drilling Program), pp. 359–398.

  • Dick, H.J.B., Natland, J.H., Miller, D.J. et al., 1999. Proc. ODP, Init. Repts., 176 [Online]. Available from World Wide Web: <http://wwwodp.tamu.edu/publications/176_IR/176TOC.HTM.>

  • Escartin, J. and Lin, J., 1995, Ridge offsets, normal faulting, and gravity anomalies of slow spreading ridges, J. Geophys. Res. 100: 6163–6177.

    Google Scholar 

  • Forsythe, R. and Prior, D., 1992, Cenozoic continental geology of South America and its relations to the evolution of the Chile Triple Junction, in: Behrmann, J.H., Lewis, S.D., Musgrave, R.J. et al. Proceedings Ocean Drilling Program Leg 141, College Station, TX (Ocean Drilling Program), pp. 23–31.

  • Francheteau, J., Armijo, R., Cheminée, J.L., Hekinian, R., Lonsdale, P. and Blum, N., 1992, Dyke complex of the East Pacific Rise exposed in the walls of Hess Deep and the structure of the upper oceanic crust, Earth Planet. Sci. Lett. 111: 109–121.

    Google Scholar 

  • Fryer, G.J., Miller, D.J. and Berge, P.A., 1989, Seismic anysotropy and age-dependent structure of the upper oceanic crust, in J.M. Sinton, (ed.), Evolution of Mid Ocean Ridges, American Geophysical Union. Washington D.C., Geophysical Monograph 57, IUGG, 8: 1–8.

    Google Scholar 

  • Galindo-Zaldívar, J., Jabaloy, A., Maldonado, A. and Sanz de Galdeano, C., 1996, Continental fragmentation along the South Scotia Ridge transcurrent plate boundary (NE Antarctic Peninsula), Tectonophysics 242: 274–301.

    Google Scholar 

  • Harper, G.D., 1985, Tectonics of slow spreading mid-ocean ridges and consequences of a variable depth to the brittle/ductile transition, Tectonics 4: 395–409.

    Google Scholar 

  • Hooft, E.E., Detrick, R.S. and Kent, G.M., 1997, Seismic structure and indicators of magma budget along the southern East Pacific Rise. J. Geophys. Res. 102: 27319–27340.

    Google Scholar 

  • IAGA,1996, Division V, Group 8, Internation. Reference Field, 1995 revision, Geophys. J. Int. 125: 318.

  • Karson, J. A., 1991, Accommodation zones and transfer faults: Integral components of Mid-Atlantic Ridge extensional systems, in T. Peters, A. Nicolas, and R.J. Coleman (eds.), Ophiolite Genesis and Evolution of the Oceanic Lithosphere: Oman, Ministry of Petroleum and Minerals, Sultanate of Oman, Kluwer Academic Publishers, (Dordrecht, The Netherlands, pp. 21–37.

    Google Scholar 

  • Karson, J. A. and Dick, H.J.B., 1983, Tectonics of ridge-transform intersections at the Kane Fracture Zone, Mar. Geophys. Res. 6: 51–98.

    Google Scholar 

  • Karson, J. A., Collins, J. A. and Casey, J. F., 1984, Geologic and seismic structure of the crust mantle transition in the Bay of Islands Ophiolite Complex, J. Geophys. Res. 89-B7: 6126–6138.

    Google Scholar 

  • Kent, G.M., Harding, A.J. and Orcutt, J.A., 1990, Evidence for a smaller magma chamber beneath the East Pacific Rise at 9°30′ N, Nature 344: 650–653.

    Google Scholar 

  • Klepeis, K.A. and Lawver, L.A., 1996, Tectonics of the Antarctic-Scotia plate boundary near Elephant and Clarence Islands, West Antarctica, J. Geophys. Res. 101: 20211–20231.

    Google Scholar 

  • LaBrecque, J. L., Kent, D. V. and Cande, S. C., 1977, Revised magnetic polarity time scale for Late Cretaceous and Cenozoic time, Geology 5: 330–335.

    Google Scholar 

  • Larter, R.D. and Barker, P.F., 1991, Effects of ridge crest-trench interaction on Antarctic-Phoenix spreading: Forces on a young subducting plate, J. Geophys. Res. 96: 19586–19607.

    Google Scholar 

  • Larter, R.D., King, E.C., Leat, P.T., Reading, A.M., Smellie, J.L. and Smythe, D.K., 1998, South Sandwich slices reveal much about arc structure geodynamics, and composition, Eos, Trans. AGU 79: 281–285.

    Google Scholar 

  • Lawver, L.A., Gahagan, L.M. and Coffin, M.F., 1992, The development of paleoseaways around Antarctica, in: J.P. Kennett and D.A. Warnke (eds), The Antarctic Paleoenvironment: A Perspective on Global Change, V. 56, AGU Antarctic Research Series 56: 7–30.

  • Livermore, R.A. and Woollett, R.W., 1993, Seafloor spreading in the Weddell Sea and southwest Atlantic since the Late Cretaceous, Earth Planet. Sci. Lett. 117: 475–495.

    Google Scholar 

  • Livermore, R., McAddo, D. and Marks, K., 1994, Scotia Sea tectonics from high resolution satellite gravity, Earth Planet. Sci. Lett. 123: 255–268.

    Google Scholar 

  • Livermore, R.A., Balanyá, J.C., Maldonado, A., Martínez, J.M., Rodríguez-Fernández, J., Sanz de Galdeano, C., Galindo-Zaldívar, J., Jabaloy, A., Barnolas, A., Somoza, L., Hernández, J., Suriñach, E. and Viseras, C., 2000, Autopsy on a dead spreading centre: the Phoenix Ridge Drake Passage, Antarctica. Geology (in press).

  • Lodolo, E., Coren, F., Schreider, A.A. and Ceccone, G., 1997, Geophysical evidence of a relict oceanic crust in the South-western Scotia Sea, Mar. Geophys. Res. 19: 439–450.

    Google Scholar 

  • Macdonald, K.C., Fox, P.J., Perram, L.J., Eisen, M.F., Haymon, R.M., Miller, S.P., Carbotte, S.M., Cormier, M.-H. and Shor, A.N., 1988, A new view of the mid-ocean ridge from the behaviour of ridge-axis discontinuities, Nature 335: 217–225.

    Google Scholar 

  • Maldonado, A., Larter, R. and Aldaya, F., 1994, Forearc tectonic evolution of the South Shetland margin, Antarctic Peninsula, Tectonics 13: 1345–1370.

    Google Scholar 

  • Maldonado, A., Galindo-Zaldívar, J., Jabaloy, A., Martínez, J.M., Sanz de Galdeano, C., Somoza, L. and Suriñach, E., 1999, Deep crustal structure of the area of intersection between the Shackleton Fracture Zone and the West Scotia Ridge (Drake Passage, Antarctica). 6th International Congress of the Brazilian Geophysical Society, Rio de Janeiro, Brazil, 15–19 August, 4 pp.

  • McCarthy, J., Mutter, J.C., Morton, J.L., Sleep, N.H. and Thompson, G.T., 1988, Relict magma chamber structures preserved within the Mesozoic North Atlantic crust?, Geol. Soc. Am. Bull. 100: 1423–1436.

    Google Scholar 

  • Mével, C. and Cannat, M., 1991, Lithospheric stretching and hydrothermal processes in oceanic gabbros from slow-spreading ridges, in: T. Peters, A. Nicolas and R.J. Coleman (eds), Ophiolite Genesis and Evolution of the Oceanic Lithosphere: Oman, Ministry of Petroleum and Minerals, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 293–312.

    Google Scholar 

  • Mével, C., Gillis, K. and Shipboard Scientific Party, 1993, Introduction and principal results, in: K. Gillis, C. M_vel and J. Allan et al. (eds), Proceedings Ocean Drilling Program leg 147 Init. Rep., College Station, TX (Ocean Drilling Program), pp. 5–14.

  • Minshull, T.A. and White, R.S., 1996, Thin crust on the flanks of the slow-spreading Southwest Indian Ridge, Geophys. J. Int. 125: 139–148.

    Google Scholar 

  • Minshull, T.A. and Hall, B.D. 1997, Geometry of a mid-ocean-ridge normal fault, Geology 25: 835–838.

    Google Scholar 

  • Morris, E., Detrick, R.S., Minshull, T.A., Mutter, J.C., White, R.S., Su, W. and Buhl, P., 1993, Seismic structure of oceanic crust in the western North Atlantic, J. Geophys. Res. 98: 13879–13903.

    Google Scholar 

  • Mutter, J.C. and Karson, J.A., 1992, Structural processes at slowspreading ridges, Science 257, 627–634.

    Google Scholar 

  • Mutter, C.Z. and Mutter, J.C., 1993, Variations in thickness of layer 3 dominate oceanic crustal structure, Earth Planet. Sci. Lett. 117: 295–317.

    Google Scholar 

  • Nicolas, A., Reuber, I. and Benn, K., 1988, A new magma chamber model based on structural studies in the Oman ophiolite, Tectonics 151: 87–105.

    Google Scholar 

  • Nicolas, A., Boudier, F. and Ildefonse, B., 1996, Variable crustal thickness in the Oman ophiolite: implication for oceanic crust, J. Geophys. Res. 101: 17941–17950.

    Google Scholar 

  • Pelayo, A.M. and Wiens, D.A., 1989, Seismotectonics and relative plate motions in the Scotia Sea Region. J. Geophys. Res. 94: 7293–7320.

    Google Scholar 

  • Pockalny, R.A., Detrick, R.S. and Fox, P.J., 1988, Morphology and tectonics of the Kane Transform from Sea Beam bathymetry data, J. Geophys. Res. 93: 3179–3193.

    Google Scholar 

  • Pockalny, R.A., Gente, P. and Buck, R., 1996, Oceanic transverse ridges: a flexural response to fracture-zone-normal extension, Geology 24: 71–45.

    Google Scholar 

  • Pudsey, C.J. and Howe, J.A., 1998, Quaternary history of the Antarctic Circumpolar Current: evidence from the Scotia Sea, Mar. Geol. 148: 83–112.

    Google Scholar 

  • Purdy, G.M., Kong, L.S.L., Christeson, G.L. and Solomon, S.C., 1992, Relationship between spreading rate and seismic structure of mid-ocean ridges, Nature 355: 815–817.

    Google Scholar 

  • Ranero, C.R., Reston, T.J., Belykh, I. and Gnibidenko, H., 1997, Reflective oceanic crust formed at a fast-spreading center in the Pacific, Geology 25: 499–502.

    Google Scholar 

  • Sandwell, D.T. and Smith, W.H.F., 1997. Marine gravity anomaly from Geosat and ERS-1 satellite altimetry, J. Geophys. Res. 102: 10039–10054.

    Google Scholar 

  • Sinton, J.M. and Detrick, R.S., 1992, Mid-ocean ridge magma chambers, J. Geophys. Res. 97: 197–216.

    Google Scholar 

  • Sleep, N.H. and Barth, G.A., 1994, The nature of oceanic lower crust and shallow mantle emplaced at low spreading rates, Eos, Trans. AGU 75: 626.

    Google Scholar 

  • Smith, D.K. and Cann, J.R., 1993, Building the crust at the Mid-Atlantic Ridge, Nature 365: 707–715.

    Google Scholar 

  • Solomon, S.C. and Toomey, D.R., 1992, The structure of mid-ocean ridges, Annu. Rev. Earth Planet. Sci. 20: 329–364.

    Google Scholar 

  • Swift, S.A. and Stephen, R.A., 1992, How much gabbro is in ocean seismic layer 3?, Geophys. Res. Lett. 19: 1871–1874.

    Google Scholar 

  • Torta, J.M., Solé, J.G., Altadill, D., Ugalde, A., Curtó, J.J., Sanclement, E., Alberca, L.F. and García, A., 1997., A magnetic station at the Spanish Antarctic station Juan Carlos I, Bol. R. Soc. Esp. Hist. Nat. 93: 113–121.

    Google Scholar 

  • Torta, J.M., Gaya-Piqué, L., Altadill, D., Curtó, J.J., Sanclement, E., Solé, J.G., Apostolov, E.M., Alberca, L.F. and García, A., 1998, Livingston island Geomagnetic Observatory. 1997 and 1997–1998 Survey Bulletin, Publicaciones Observatori de l'Ebre, Miscelànea 41, Observatori de l'Ebre (C.S.I.C.-Univ. Ramón Llull), Roquetes.

    Google Scholar 

  • White, R.S., Detrick, R.S., Mutter, J.C., Buhl, P., Minshull, T.A. and Morris, E., 1990. New seismic images of oceanic crustal structure, Geology 18: 462–465.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maldonado, A., Carlos Balanyá, J., Barnolas, A. et al. Tectonics of an extinct ridge-transform intersection, Drake Passage (Antarctica). Marine Geophysical Researches 21, 43–68 (2000). https://doi.org/10.1023/A:1004762311398

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004762311398

Navigation