Skip to main content
Log in

Structure–activity relationship study of the plasma membrane translocating potential of a short peptide from HIV-1 Tat protein

  • Published:
Letters in Peptide Science Aims and scope Submit manuscript

Abstract

Tat, a 86-amino acid protein involved in thereplication of Human Immunodeficiency Virus type 1(HIV-1), is able to translocate efficiently throughthe plasma membrane and to reach the nucleus totransactivate the viral genome. The region 37–72 ofthe Tat protein, centered on a cluster of basicamino acids, has been assigned to this translocationactivity. Recent data in our group have attributedthis membrane translocating activity to a peptideextending from residues 48 to 60, which contains acluster of eight basic amino acids within a linearsequence of nine residues. Internalization of thispeptide into cells occurred within minutes atconcentrations as low as 100 nM. In order to definemore precisely the involvement of these basic aminoacids in peptide translocation, several analoguescarrying deletions or substitutions of one, orseveral, of the basic residues were synthesized andtested for their cellular uptake and nucleartranslocation. A direct correlation between theoverall charge of the peptide and its cellinternalization was found. In addition, the covalentlinkage of this short basic peptide allows theefficient translocation of a non-membrane permeant peptide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Lebleu, B., Trends Biotechnol., 14 (1996) 109.

    Google Scholar 

  2. Plank, C., Oberthauser, B., Mechtler, K., Koch, C. and Wagner, E., J. Biol. Chem., 269 (1994) 12918.

    Google Scholar 

  3. Bongartz, J.P., Aubertin, A.-M., Milhaud, P.G. and Lebleu, B., Nucleic Acids Res., 22 (1994) 4681.

    Google Scholar 

  4. Wagner, E., Plank, C., Zatloukal, K., Cotten, M. and Birnstiel, M.L., Proc. Natl. Acad. Sci. USA, 89 (1992) 7934.

    Google Scholar 

  5. Derossi, D., Joliot, H.A., Chassaing, G. and Prochiantz, A., J. Biol. Chem., 269 (1994) 10444.

    Google Scholar 

  6. Allinquant, B., Hantraye, P., Mailleux, P., Moya, K., Bouillot, C. and Prochiantz, A., J. Cell Biol., 128 (1995) 919.

    Google Scholar 

  7. Fawell, S., Seery, J., Daikh, Y., Chen, L.L., Pepinsky, B. and Barsoum, J., Proc. Natl. Acad. Sci. USA, 91 (1994) 664.

    Google Scholar 

  8. Vivès, E., Brodin, P. and Lebleu, B., J. Biol. Chem., 272 (1997) 16010.

    Google Scholar 

  9. Ellmanhn, G.L., Arch. Biochem. Biophys., 82 (1959) 70.

    Google Scholar 

  10. Ruben, S., Perkins, A., Purcell, R., Jounc, K., Sia, R., Burghoff, R., Haseltine, W.A. and Rosen, C.A., J. Virol., 63 (1989) 1.

    Google Scholar 

  11. Vivès, E., Charneau, P., Van Rietschoten, J., Rochat, H. and Bahraoui, E., J. Virol., 68 (1994) 3343.

    Google Scholar 

  12. Anderson, R.G.W., Kamen B.A., Rothberg, K.G. and Lacey, S.W., Science, 255 (1992) 410.

    Google Scholar 

  13. Loret, E.P., Vivès, E., Ho, P.S., Rochat, H., Van Rietschoten, J. and Johnson Jr., W.C., Biochemistry, 30 (1991) 6013.

    Google Scholar 

  14. Derossi, D., Calvet, S., Trembleau, A., Brunissen, A., Chas-saing, G. and Prochiantz, A., J. Biol. Chem., 271 (1996) 18188. s

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vivès, E., Granier, C., Prevot, P. et al. Structure–activity relationship study of the plasma membrane translocating potential of a short peptide from HIV-1 Tat protein. Letters in Peptide Science 4, 429–436 (1997). https://doi.org/10.1023/A:1008850300184

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008850300184

Navigation