Skip to main content
Log in

Constrained C-terminal hexapeptide neurotensin analogues containing a 3-oxoindolizidine skeleton

  • Published:
Letters in Peptide Science Aims and scope Submit manuscript

Summary

In order to enforce different spatial orientations in the C-terminal hexapeptide of neurotensin (NT8−13) and to gain information about the importance of the 10–11 peptide bond for binding to NT receptors, the Pro10-Tyr11 fragment has been replaced with (2R,8S,8aR)-, (2S,8S,8aR)-, (2S,8S,8aS)-, (2S,8R,8aS)- and (2R,8R,8aS)-8-amino-2-benzyl-3-oxoindolizidine-2-carboxylic acid. Molecular dynamics calculations and energy minimization studies have shown that, contrarily to the Pro-Tyr moiety, none of these indolizidines display a tendency to adopt type I and III β-turns, but those having (8S,8aR) or (8R,8aS) stereochemistry essentially adopt extended conformations and the (8S,8aS) stereoisomer prefers a nonstandard folding. The four diastereomeric NT8−13 analogues incorporating (8S,8aR) or (8R,8aS) indolizidines displayed binding affinities for the brain NT receptor similar to that of [Ala11]-NT8−13 and only five- to ninefold lower than that of the corresponding analogue, [Phe11]NT8−13. Although this slight decrease could be attributed to differences in conformational behavior between these constrained NT8−13 analogues and [Phe11]NT8−13 or NT8−13, it is not clear whether the β-turn around Pro10-AA11 (AA=Phe, Tyr) is conserved upon receptor binding. An excessive restriction in the motions of the aromatic side chain, imposed by the highly steric constraint of the indolizidine moiety, emerges as an alternative explanation. The findings reported here demonstrate the possibility of replacing the Pro10-Tyr11 dipeptide in NT8−13 with a non-peptide residue without affecting considerably the affinity for brain NT receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Martínez, J., In Emmet, J.C. (Ed.) Comprehensive Medicinal Chemistry, Vol. 3, Pergamon Press, Oxford, 1990, pp. 944–946.

    Google Scholar 

  2. Rivier, J.E., Lazarus, L.H., Perrin, M.H. and Brown, M.R., J. Med. Chem., 20 (1977) 1409.

    Google Scholar 

  3. St.-Pierre, S., Lalonde, J.M., Gendreau, M., Quirion, R., Regoli, D. and Rioux, F., J. Med. Chem., 24 (1981) 370.

    Google Scholar 

  4. Henry, J.A., Horwell, D.C., Meecham, K.G. and Rees, D.C., Bioorg. Med. Chem. Lett., 3 (1993) 949.

    Google Scholar 

  5. Heyl, D.L., Sefler, A.M., He, J.X., Sawyer, T.K., Wustrow, D.J., Akunne, H.C., Davis, M.D., Pugsley, T.A., Heffner, T.G., Corbin, A.E. and Cody, W.L., Int. J. Pept. Protein Res., 44 (1994) 233.

    Google Scholar 

  6. Sefler, A.M., He, J.X., Sawyer, T.K., Holub, K.E., Omecinsky, D.O., Reily, M.D., Thanabal, V., Akunne, H.C. and Cody, W.L., J. Med. Chem., 38 (1995) 249.

    Google Scholar 

  7. Finn, P.W., Robson, B. and Griffiths, E.C., Int. J. Pept. Protein Res., 24 (1984) 407.

    Google Scholar 

  8. Wu, C.C., Ikeda, K. and Yang, J.T., Biochemistry, 20 (1981) 566.

    Google Scholar 

  9. Nieto, J.L., Rico, M., Santoro, J., Herranz, J. and Bermejo, F.J., Int. J. Pept. Protein Res., 28 (1986) 315.

    Google Scholar 

  10. Xu, G.-Y. and Deber, C.M., Int. J. Pept. Protein Res., 37 (1991) 528.

    Google Scholar 

  11. Friedinger, R.M., Veber, D.F., Perlow, D.S., Brooks, J.R. and Saperstein, R., Science, 210 (1980) 656.

    Google Scholar 

  12. Hölzemann, G., Kontakte, 3 (1991) 55.

    Google Scholar 

  13. Giannis, A. and Kolter, T., Angew. Chem., Int. Ed. Engl., 32 (1993) 1244.

    Google Scholar 

  14. González-Muñiz, R., Domínguez, M.J. and García-López, M.T., Tetrahedron, 48 (1992) 5191.

    Google Scholar 

  15. Lazarus, L.H., Perrin, M.H., Brown, M.R. and Rivier, J.E., J. Biol. Chem., 252 (1977) 7180.

    Google Scholar 

  16. Kaiser, E., Colescott, R.L., Bossinger, C.D. and Cook, P.I., Anal. Biochem., 34 (1970) 595.

    Google Scholar 

  17. Maple, J.R., Dinur, U. and Hagler, A.T., Proc. Natl. Acad. Sci. USA, 85 (1988) 5350.

    Google Scholar 

  18. Mills, A., Demoliou-Mason, C.D. and Barnard, E.A., J. Neurochem., 50 (1988) 904.

    Google Scholar 

  19. Domínguez, M.J., Ph.D. Thesis, Complutense University, Madrid, 1994.

  20. Gómez-Monterrey, I., Domínguez, M.J., González-Muñiz, R., Harto, J.R. and García-López, M.T., Tetrahedron Lett., 32 (1991) 1089.

    Google Scholar 

  21. Ball, J.B., Hughes, R.A., Alewood, P.F. and Andrews, P.R., Tetrahedron, 49 (1993) 3467.

    Google Scholar 

  22. Lisowski, M., Pietrzynski, G. and Rzeszotarska, B., In Schneider, C.H. and Eberle, A.N. (Eds.) Peptides 1992 (Proceedings of the 22nd European Peptide Symposium), ESCOM, Leiden, 1993, pp. 497–498.

    Google Scholar 

  23. Quirion, R., Regoli, D., Rioux, F. and St.-Pierre, S., Br. J. Pharmacol., 69 (1980) 689.

    Google Scholar 

  24. Kitabgi, P., Poustis, C., Granier, C., Van Rietschoten, J., Rivier, J., Morgat, J.L. and Freychet, P., Mol. Pharmacol., 18 (1980) 11.

    Google Scholar 

  25. Jolicoeur, F.B., Barveau, A., Rioux, F., Quirion, R. and St.-Pierre, S., Peptides, 2 (1981) 171.

    Google Scholar 

  26. Checler, F., Vincent, J.P. and Kitabgi, P., J. Pharmacol. Exp. Ther., 227 (1983) 743.

    Google Scholar 

  27. Checler, F., Emson, P., Vincent, J.P. and Kitabgi, P., J. Neurochem., 43 (1984) 1295.

    Google Scholar 

  28. Lugrin, D., Vecchini, F., Doulut, S., Rodríguez, M., Martínez, J. and Kitabgi, P., Eur. J. Pharmacol., 205 (1991) 191.

    Google Scholar 

  29. Couder, J., Tourwé, D., Van Binst, G., Schuurkens, J. and Leysen, J.E., Int. J. Pept. Protein Res., 41 (1993) 181.

    Google Scholar 

  30. MaduskuieJr., T.P., Schmidt, W.K., Bleicher, L.S., Cacciola, J., Cheatham, W., Fevig, J.M., Johnson, A.L., McCombs, S.A., Nugiel, D.A., Spellmeyer, D.A., Tam, S.W., Voss, M.E. and Wagner, R.M., J. Cell. Biochem., 51 (1993) 232.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

García-López, M.T., Alkorta, I., Domínguez, M.J. et al. Constrained C-terminal hexapeptide neurotensin analogues containing a 3-oxoindolizidine skeleton. Lett Pept Sci 1, 269–276 (1995). https://doi.org/10.1007/BF00119767

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00119767

Key words

Navigation