Skip to main content
Log in

Activation of skinned muscle fibres from the Norway lobster Nephrops norvegicus L. by manganese ions

  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Abstract

Effects of Mn2+ and Ca2+ on the mechanical properties of glycerinated myofibrillar bundles originating from slow S1 type muscle fibres of superficial flexor muscles of the lobster Nephrops norvegicus were investigated. Mn2+ (5–20μm) activated the preparations in a dose-dependent manner. The sensitivity of myofibrillar force generation for Mn2+ was around 30 times lower than that for Ca2+. The maximal tension produced under Mn2+ activation was about 75% of that under Ca2+ activation. At higher free Mn2+ concentrations (>2mm), the steady-state force decreased; it was completely abolished at 30mm free Mn2+. These high Mn2+ solutions were accompanied by changes in MgATP and MnATP concentrations, and in the ionic strength. Control experiments have shown that none of these parameters seemed fo account fully for the observed force depression in high Mn2+ solutions. It is likely that direct effects of Mn2+ such as a change of the myofilament surface charges are responsible. The maximal unloaded shortening velocity of the myofibrillar preparations was shown to be similar under maximal Mn2+ and Ca2+ activation. Conversely, the kinetics of stretch-induced delayed force increase were about two to three times faster under Mn2+ activation. These results suggest that certain steps of the cross-bridge cycle depend on the ion species bound to the regulatory proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ashley, C. C. & Moisescu, D. G. (1977) Effects of changing the composition of the bathing solutions upon the isometric tension-pCa relationship in bundles of crustacean myofibrils. J. Physiol. 270, 627-52.

    PubMed  CAS  Google Scholar 

  • Bremel, R. D. & Weber, A. (1972) Cooperative behaviour within the functional unit of the actin filament in vertebrate skeletal muscle. Nature New Biol. 238, 97-101.

    PubMed  CAS  Google Scholar 

  • Caldwell, P. C. & Walster, G. E. (1963) Studies on the micro-injection of various substances into crab muscle fibres. J. Physiol. 169, 353-72.

    PubMed  CAS  Google Scholar 

  • Chase, P. B. & Kushmerick, M. J. (1988) Effects of pH on contraction of rabbit fast and slow skeletal muscle fibres. Biophys. J. 53, 935-46.

    PubMed  CAS  Google Scholar 

  • Collins, J. H., Theibert, J. L., Francois, J. M., Ashley, C. C. & Potter, J. D. (1991) Amino acid sequences and Ca2+-binding properties of two isoforms of barnacle troponin C. Biochemistry 30, 702-7.

    Article  PubMed  CAS  Google Scholar 

  • Donaldson, S. K. B. & Kerrick, W. G. L. (1975) Characterisation of the effects of Mg2+ on Ca2+-and Sr2+-activated tension generation of skinned skeletal muscle fibres. J. Gen. Physiol. 66, 427-44.

    Article  PubMed  CAS  Google Scholar 

  • Donaldson, S. K. B., Best, P. M. & Kerrick, W. G. L. (1978) Characterisation of the effects of Mg2+ on Ca2+-and Sr2+-activated tension generation of skinned rat cardiac fibres. J. Gen. Physiol. 71, 645-55.

    Article  PubMed  CAS  Google Scholar 

  • Eisenberg, E., Hill, T. L. & Chen, Y. (1980) Cross-bridge model of muscle contraction. Quantitive analysis. Biophys. J. 29, 195-227.

    PubMed  CAS  Google Scholar 

  • Ellis, P. D., Strang, P. & Potter, J. D. (1984) Cadmium-substituted skeletal troponin-C. Cadmium-113 NMR spectroscopy and metal binding investigations. J. Biol. Chem. 259, 10348-56.

    PubMed  CAS  Google Scholar 

  • Fink, R. H. A., Stephenson, D. G. & Williams, D. A. (1986) Potassium and ionic-strength effects on the isometric force of skinned twitch muscle-fibres of rat and toad. J. Physiol. 370, 317-37.

    PubMed  CAS  Google Scholar 

  • Fowler, W. S. & Neil, D. M. (1992) Histochemical heterogeneity of fibres in the abdominal superficial flexor muscles of the Norway lobster Nephrops norvegicus (L.). J. Exp. Zool. 264, 406-18.

    Article  PubMed  CAS  Google Scholar 

  • Fuchs, F. (1974) Chemical properties of the calcium receptor site of troponin as determined from binding studies. In Calcium Binding Proteins (edited by Drabikowski, W., Strzelecka-Golaszewska, H. & Carafoli, E.), pp. 1-27. Amsterdam: Elsevier Scientific.

    Google Scholar 

  • Galler, S. & Hilber, K. (1994) Unloaded shortening of skinned mammalian skeletal muscle fibres: effects of the experimental approach and passive force. J. Muscle Res. Cell Motil. 15, 400-12.

    Article  PubMed  CAS  Google Scholar 

  • Galler, S., Hutzler, C. & Haller, T. (1990) Effects of taurine on Ca2+-dependent force development of skinned muscle fibre preparations. J. Exp. Biol. 152, 255-64.

    PubMed  CAS  Google Scholar 

  • Galler, S. & Neil, D. M. (1994) Calcium activated and stretch induced force responses in two biochemically defined muscle fibre types of the Norway lobster. J. Muscle Res. Cell Motil. 15, 390-99.

    Article  PubMed  CAS  Google Scholar 

  • Galler, S., Schmitt, T. L. & Pette, D. (1994) Stretch activation, unloaded shortening velocity, and myosin chain isoforms of rat skeletal muscle fibres. J. Physiol. 478, 513-21.

    PubMed  CAS  Google Scholar 

  • Garone, L., Theibert, I. L., Miegel, Y., Murphy, S. C. & Collins, J. H. (1991) Lobster troponin C, amino acid sequences of three isoforms. Arch. Biochem. Biophys. 291, 89-91.

    Article  PubMed  CAS  Google Scholar 

  • GÜth, K. & Potter, J. D. (1987) Effect of rigor and cycling cross-bridges on the structure of troponin C and on the Ca2+ affinity of the Ca2+-specific regulatory sites in skinned rabbit psoas fibres. J. Biol. Chem. 262, 13627-35.

    PubMed  Google Scholar 

  • Hartshorne, D. J. & Boucher, L. J. (1974) Ion binding in troponin. In Calcium Binding Proteins (edited by Drabikowski, W., Strzelecka-Golaszewska, H. & Carafoli, E.), pp. 29-43. Amsterdam: Elsevier Scientific.

    Google Scholar 

  • Heilbrunn, L. V. & Wiercinski, F. J. (1947) The action of various cations on muscle protoplasm. J. Cell Comp. Physiol. 29, 15-29.

    Article  CAS  Google Scholar 

  • Hilber, K. & Galler, S. (1998) Improvement of the measurements on skinned muscle fibres by fixation of the fibre ends with glutaraldehyde J. Muscle Res. Cell Motil. 19, 365-72.

    Article  PubMed  CAS  Google Scholar 

  • Hoar, P. E. & Kerrick, W. G. (1988) Mn2+ activates skinned smooth muscle cells in the absence of myosin light chain phosphorylation. Pflügers Arch. 412, 225-30.

    Article  PubMed  CAS  Google Scholar 

  • Holmes, J. M., Hilber, K., Galler, S. & Neil, D. M. (1998) Shortening properties of two biochemically defined muscle fibres types of the Norway lobster Nephrops norvegicus. In preparation.

  • Itoh, T., Kuriyama, H. & Nanjo, T. (1982) Effects of calcium and manganese ions on mechanical properties of intact and skinned muscles from the guinea-pig stomach. J. Physiol. 333, 555-76.

    PubMed  CAS  Google Scholar 

  • Julian, F. J. & Moss, R. L. (1981) Effects of calcium and ionic strength on shortening velocity and tension development in frog skinned fibres. J. Physiol. 311, 179-99.

    PubMed  CAS  Google Scholar 

  • Kawai, M. & Zhao, Y. (1993) Cross-bridge scheme and force per cross-bridge state in skinned rabbit psoas muscle fibers. Biophys. J. 65, 638-51.

    PubMed  CAS  Google Scholar 

  • Kobayashi, T., Takagi, T., Koninshi, K. & Wnuk, W. (1989) Amino acid sequences of the two major isoforms of troponin C from crayfish. J. Biol. Chem. 264, 18247-59.

    PubMed  CAS  Google Scholar 

  • Lehman, W. & Szent-GyÖrgyi, A. G. (1975) Regulation of muscular contraction. Distribution of actin control and myosin control in the animal kingdom. J. Gen. Physiol. 66, 1-30.

    Article  PubMed  CAS  Google Scholar 

  • Martell, A. E. & Smith, R. M. (1977) Critical Stability Constants. London: Plenum Press.

    Google Scholar 

  • Maughan, D. W. & Godt, R. E. (1979) Stretch and radial compression studies on relaxed skinned muscle fibres of the frog. Biophys. J. 28, 391-402.

    Article  PubMed  CAS  Google Scholar 

  • Miegel, A., Kobayashi, I. & Maeda, Y. (1992) Isolation, purification and partial characterisation of tropomyosin and troponin subunits from the lobster tail muscle. J. Muscle Res. Cell Motil. 13, 608-18.

    Article  PubMed  CAS  Google Scholar 

  • Moisescu, D. G. & Thieleczek, R. (1978) Calcium and strontium concentration changes within skinned muscle preparations following a change in the external bathing solution. J. Physiol. 275, 241-62.

    PubMed  CAS  Google Scholar 

  • Moisescu, D. G. & Thieleczek, R. (1979) Sarcomere length effects on the Sr2+ and Ca2+ activation curves in skinned frog muscle fibres. Biochim. Biophys. Acta 546, 64-76.

    Article  PubMed  CAS  Google Scholar 

  • Mykles, D. (1985) Multiple variants of myofibrillar proteins in single fibres of lobster claw muscles. Evidence for two types of fibres in the cutter claw. Biol. Bull. 169, 476-83.

    Google Scholar 

  • Neil, D. M., Fowler, W. S. & Tobasnick, G. (1993) Myofibrillar protein composition correlates with histochemistry in fibres of the abdominal flexor muscles of the Norway lobster Nephrops norvegicus. J. Exp. Biol. 183, 185-201.

    CAS  Google Scholar 

  • Potter, J. D. & Gergely, J. (1975) The calcium and magnesium binding sites on troponin and their role in the regulation of myofibrillar adenosine triphosphatase. J. Biol. Chem. 250, 4628-33.

    PubMed  CAS  Google Scholar 

  • Stephenson, D. G. & Thieleczek, R. (1986) Activation of the contractile apparatus of skinned fibres of frog by the divalent cations barium, cadmium and nickel. J. Physiol. 380, 75-92.

    PubMed  CAS  Google Scholar 

  • Stephenson, D. G. & Williams, D. A. (1980) Activation of skinned arthropod muscle fibres by Ca2+ and Sr2+. J. Muscle Res. Cell Motil. 1, 73-87

    Article  PubMed  CAS  Google Scholar 

  • West, J. M., Humphris, D. C. & Stephenson, D. G. (1992) Differences in maximal activation properties of skinned short-and long-sarcomere muscle fibres from the claw of the freshwater crustacean Cherax destructor. J. Muscle Res. Cell Motil. 13, 668-84.

    Article  PubMed  CAS  Google Scholar 

  • West, J. M. & Stephenson, D. G. (1993) Ca2+ and Sr2+activation properties of skinned muscle fibres with different regulatory systems from crustacea and rat. J. Physiol. 462, 579-96.

    PubMed  CAS  Google Scholar 

  • Winter, M. R. C., Head, J. F. & Perry, S. V. (1974) Ion binding in troponin. In Calcium Binding Proteins (edited by Drabikowski, W., Strzelecka-Golaszewska, H. & Carafoli, E.), pp. 109-127. Amsterdam: Elsevier Scientific.

    Google Scholar 

  • Wnuk, W. (1989) Resolution and calcium-binding properties of the two major isoforms of troponin C from crayfish. J. Biol. Chem. 264, 18240-46.

    PubMed  CAS  Google Scholar 

  • Yoshida, A. & Tawada, K. (1976) Temperature-dependence of tension development by glycerinated muscle fibres of rabbit psoas in Mn (II)-ATP and Mg-ATP solutions. J. Biochem. 80, 861-5.

    PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holmes, J.M., Hilber, K., Galler, S. et al. Activation of skinned muscle fibres from the Norway lobster Nephrops norvegicus L. by manganese ions. J Muscle Res Cell Motil 19, 537–548 (1998). https://doi.org/10.1023/A:1005312610629

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005312610629

Keywords

Navigation