Skip to main content
Log in

Nucleotide and actin binding properties of the isolated motor domain from Dictyostelium discoideum myosin

  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Abstract

Nucleotide and actin binding properties of the truncated myosin head (S1dC) from Dictyostelium myosin II were studied in solution using rabbit skeletal myosin subfragment 1 as a reference material. S1dC and subfragment 1 had similar affinities for ADP analogues, ɛADP and TNP-ADP. The complexes of ɛADP and BeFx or AlF4 - were less stable with S1dC than with subfragment 1. Stern-Volmer constants for acrylamide quenching of S1dC complexes with ɛADP, ɛADP·AlF -4 and ɛADP.BeFx were 2.6, 2.9 and 2.2 M-1, respectively. The corresponding values for subfragment 1 were 2.6, 1.5 and 1.1 M-1. The environment of the nucleotide binding site was probed by using a hydrophobic fluorescent probe, PPBA. PPBA was a competitive inhibitor of S1dC Ca2+-ATPase (Ki = 1.6 μm). The binding of nucleotides to subfragment 1 enhanced PPBA fluorescence and caused blue shifts in the wavelength of its maximum emission in the order: ATP ≈ ADP·AlF4- ≈ ADP·BeFx > ATPSγS > ADP > PPi. In the case of S1dC, the effects of different nucleotides were smaller and indistinguishable from each other. S1dC bound actin tighter than S1 (Kd = 7 nm and 60 nm, respectively). The actin activated MgATPase activity of S1dC varied between preparations, and the Vmax and Km values ranged between 3 and 7 s-1 and 60 and 190 μm, respectively. S1dC showed lower structural stability than S1 as revealed by their thermal inactivations at 35° C. These results show that the nucleotide and actin binding of S1dC and subfragment 1 are similar but there are some differences in nucleotide and phosphate analogue-induced changes and the communication between the nucleotide and actin binding sites in these proteins

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • APPLEGATE & REISLER (1984) Protease sensitive regions in myosin subfragment 1. Biochemistry23, 4779–84.

    Article  PubMed  CAS  Google Scholar 

  • BIVIN, D. B., UE, K., KHOROSHEV, M. & MORALES, M. F. (1994) Effect of lysine methylation and other ATPase modulators on the active site of myosin subfragment 1. Proc. Natl. Acad. Sci. USA91, 8665–9.

    Article  PubMed  CAS  Google Scholar 

  • BOBKOV, A. A., KHVOROV, N. V., GOLITSINA, N. L. & LEVITSKY, D. I. (1993) Calorimetric characterization of the stable complexes of myosin subfragment 1 with ADP and beryllium fluoride. FEBS Lett.332, 64–6.

    Article  PubMed  CAS  Google Scholar 

  • BRADFORD, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem.72, 248–54.

    Article  PubMed  CAS  Google Scholar 

  • COOPER, J. A., WALKER, S. B. & POLLARD, T. D. (1983) Pyren actin: documentation of the validity of a sensitive assay for actin polymerization. J. Mus. Res. Cell Motil.4, 253–62.

    Article  CAS  Google Scholar 

  • FISHER, A. J., SMITH, C. A., THODEN, J. B., SMITH, R., SUTOH, K., HOLDEN, H. M. & RAYMENT, I. (1995) X-ray structures of the myosin motor domain of Dictyostelium discoideum complexed with MgADP-BeFx and MgADP-AlF4– Biochemistry34, 8960–72.

    Article  PubMed  CAS  Google Scholar 

  • GEEVES, M. A. & JEFFRIES, T. E. (1988) The effect of nucleotide upon a specific isomerization of actomyosin subfragment 1. Biochem. J.256, 41–6.

    PubMed  CAS  Google Scholar 

  • GEEVES, M., KURZAWA, S., HUNT, D. & MANSTEIN, D. (1996) Kinetic characterisation of different length fragments of the myosin head expressed in Dictyostelium discoideum. Biophys. J.70, n. 2, part 2, a267.

    Google Scholar 

  • GODFREY, J. & HARRINGTON, W. F. (1970) Self-association in the myosin system at high ionic strength. I. Sensitivity of the interaction to pH and ionic environment. Biochemistry9, 886–93.

    Article  PubMed  CAS  Google Scholar 

  • HIRATSUKA, T. (1982) Biological activities and spectroscopic properties of chromophoric and fluorescent analogs of adenine nucleoside and nucleotides, 2′,3′-O-(2,4,6-trinitrocyclohexadienylidene) adenosine derivatives. Biochim. Biophsy. Acta. 719, 509–17.

    CAS  Google Scholar 

  • HIRATSUKA, T. (1990) Transmission of ADP-vanadate-induced conformational changes to three peptide segments of myosin subfragment-1. J. Biol. Chem.265, 18791–6.

    PubMed  CAS  Google Scholar 

  • HIRATSUKA, T. (1994) Nucleotide-induced closure of the ATP-binding pocket in myosin subfragment-1. J. Biol. Chem.269, 27251–7.

    PubMed  CAS  Google Scholar 

  • ITAKURA, S. I., YAMAKAWA, H., TOYOSHIMA, Y. Y., ISHIJIMA, A., KOJIMA, T., HARADA, Y., YANAGIDA, T., WAKABAYASHI, T. & SUTOH, K. (1993) Force-generating domain of myosin motor. Biochem. Biophs. Res. Commun.196, 1504–10.

    Article  CAS  Google Scholar 

  • KODAMA, T., FUKUI, K. & KOMETANI, K. (1986) The initial phosphate burst in ATP hydrolysis by myosin and subfragment-1 studied by modified Malachite Green method for determination of inorganic phosphate. J. Biochem.99, 1465–72.

    PubMed  CAS  Google Scholar 

  • KOUYAMA, T. & MIHASHI, K. (1981) Fluorimetry study of N-(1-pyrenyl)iodacetamide-labelled F-actin. Eur. J. Biochem.114, 33–8.

    Article  PubMed  CAS  Google Scholar 

  • LEVITSKY, D. I., PONOMAREV, M. A., GEEVES, M. A., NIKOLAEVA, O. P. & MANSTEIN, D. J. (1997) Calorimetric characterisation of the motor domain of Dictyostelium discoideum myosin, J. Muscle. Res. Cell. Motil, in press.

  • LYMN, R. W. & TAYLOR, E. W. (1970) Transient state phosphate production in the hydrolysis of nucleoside triphosphates by myosin. Biochemistry9, 2975–83.

    Article  PubMed  CAS  Google Scholar 

  • MA, Y.-Z. & TAYLOR, E. W. (1994) Kinetic mechanism of myofibril ATPase. Biophys. J.66, 1542–53.

    Article  PubMed  CAS  Google Scholar 

  • MOCZ, G., SZILAGYI, L., CHEN LU, K., FABIAN, F., BALINT, M. & GERGELY, J. (1984) Effect of nucleotides, divalent cations and temperature on the tryptic susceptibility of myosin subfragment 1. J. Biochem.145, 221–9.

    CAS  Google Scholar 

  • MORNET, D., PANTEL, P., AUDEMARD, E., DERANCOURT, J. & KASSAB, R. (1985) Molecular movements promoted by metal nucleotides in the heavy-chain regions of myosin heads from skeletal muscle. J. Mol. Biol.183, 479–89.

    Article  PubMed  CAS  Google Scholar 

  • PHAN, B. C., CHEUNG, P. STAFFORD, W. F. & REISLER, E. (1996) Complexes of myosin subfragment-1 with adenosine diphosphate and phosphate analogs: probes of active site and protein conformation. Biophys. Chem.59, 341–9.

    Article  PubMed  CAS  Google Scholar 

  • RAYMENT, I., RYPNIEWSKY, W. R., SCHMIDT-BASE, K., SMITH, R., TOMCHIK, D. R., BENNIG, M. M., WINKELMANN, D. A., WESENBERG, G. & HOLDEN, H. M. (1993) Three-dimensional structure of myosin subfragment-1: a molecular motor. Science261, 51–8.

    Google Scholar 

  • RITCHIE, M. D., GEEVES, M. A., WOODWARD, S. K. A. & MANSTEIN, D. J. (1993) Kinetic characterization of a cytoplasmic myosin motor domain expressed in Dictyostelium discoideum. Proc. Natl. Acad. Sci. USA90, 8619–23.

    Article  PubMed  CAS  Google Scholar 

  • ROSENFELD, S. S. & TAYLOR, E. W. (1984) Reactions of 1-N6-ethenoadenosine nucleotides with myosin subfragment 1 and acto-subfragment 1 of skeletal and smooth muscle. J. Biol. Chem.259, 11920–9.

    PubMed  CAS  Google Scholar 

  • SPUDICH, J. A. & WATT, S. (1971) Regulation of skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomysin-troponin complex with actin and the proteolytic fragments of myosin. J. Biol. Chem.246, 4866–76.

    PubMed  CAS  Google Scholar 

  • TRUONG, T., MEDLEY, Q. G. & COTE, G. P. (1992) Actin-activated Mg-ATPase activity of Dictyostelium myosin II. J. Biol. Chem.267, 9767–72.

    PubMed  CAS  Google Scholar 

  • WALLER, G. S., OUYANG, G., SWAFFORD, J., VIBERT, P. & LOWEY, S. (1995) Minimal motor domain from chicken skeletal muscle myosin. J. Biol. Chem.270, 15348–52.

    Article  PubMed  CAS  Google Scholar 

  • WEEDS, A. G. & POPE, B. (1977) Studies on the chymotryptic digestion of myosin. Effect of divalent cations on proteolytic susceptibility. J. Mol. Biol.111, 129–57.

    Article  PubMed  CAS  Google Scholar 

  • WERBER, M. M., SZENT-GYORGYI, A. G. & FASMAN, G. D. (1972) Fluorescence studies on heavy meromyosin — substrate interaction. Biochemistry11, 2872–82.

    Article  PubMed  CAS  Google Scholar 

  • WOODWARD, S. K. A., GEEVES, M. A. & MANSTEIN, D. J. (1995) Kinetic characterization of the catalytic domain of Dictyostelium discoideum myosin. Biochemistry34, 16056–64.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bobkov, A.A., Sutoh, K. & Reisler, E. Nucleotide and actin binding properties of the isolated motor domain from Dictyostelium discoideum myosin. J Muscle Res Cell Motil 18, 563–571 (1997). https://doi.org/10.1023/A:1018667319386

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018667319386

Keywords

Navigation