Skip to main content
Log in

Frontiers of positron and positronium chemistry in condensed media

  • Plenary Topics
  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Our work proves that positron annihilation spectroscopy is an excellent tool to follow the structural changes in chemical species. We present four examples to support the above statement. The sizes of defects in electrodeposited chromium layers were studied and estimated on the basis of positron lifetime spectra decomposed into two components. Vacancies, di-vacancies and vacancy-clusters could be identified in the electrodeposites. The changes of the size distribution of the free volume units in poly(methylmetacrylate) on the dependence of molecular weight and dispersity were described by the correlation between the lifetime ofortho-Ps and the free volume units in polymers. It was found that the free volume is affected by both the molecular weight and dispersity. The effect of dispersity was explained by the sample preparation technique, namely by the application of high pressure. The ortho-para conversion ofortho-Ps was used to follow the partial spin-crossover in [Fe(1-ethyl-1H-tetrazole)6](BF4)2. The spin-crossover temperature was identified to be 105 K. A conformal structural transformation was found in [Zn(1-propyl-1H-tetrazole)6](BF4)2 between 170 and 90 K by positronium lifetime measurement and the role of (BF4)2− anion, in this transformation, was proved by19F NMR spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. A. M. Dirac, Proc. Cambridge Phil. Soc., 26 (1930) 361.

    CAS  Google Scholar 

  2. C. D. Anderson, Phys. Rev., 41 (1932) 405.

    Article  CAS  Google Scholar 

  3. C. U. Chisholm, R. J. G. Camegie, Electrodep. Surf. Treat., 1 (1973) 367.

    CAS  Google Scholar 

  4. J. J. B. Ward, I. R. A. Christie, Trans. IMF, 49 (1971) 148.

    CAS  Google Scholar 

  5. T. Hayaski, H. Nishikawa, J. Met. Finish. Soc., Japan, 25 (1974) 660.

    Google Scholar 

  6. C. Bames, J. J. B. Ward, J. R. House, Trans. IMF, 55 (1977) 73.

    Google Scholar 

  7. D. Smart, T. E. Such, S. J. Wake, Trans. IMF, 61 (1983) 105.

    CAS  Google Scholar 

  8. A. Watson, C. U. Chisholm, M. R. El-Sharif, Trans. IMF, 64 (1986) 149.

    CAS  Google Scholar 

  9. M. El-Sharif, C. U. Chisholm, A. Watson, Trans. IMF, 66 (1988) 34.

    CAS  Google Scholar 

  10. A. M. H. Anderson, M. El-Sharif, A. Watson, C. U. Chisholm, Trans. IMF, 69 (1991) 26.

    Google Scholar 

  11. A. M. Smith, A. Watson, D. H. Vaughan, Trans. IMF, 71 (1993) 106.

    CAS  Google Scholar 

  12. G. D. Wilcox, D. R. Gabe, Trans. IMF, 70 (1992) 100.

    CAS  Google Scholar 

  13. M. El-Sharif, S. Ma, C. U. Chisholm, Trans. IMF, 73 (1995) 19.

    CAS  Google Scholar 

  14. R. N. West, in: Positrons in Solids,P. Hautojarvi (Ed.), Springer, New York, 1979.

    Google Scholar 

  15. P. Kirkegaard, M. Eldrup, O. E. Mogensen, N. J. Pedersen, Comput. Phys. Commun., 23 (1981) 307.

    CAS  Google Scholar 

  16. D. Rigby, R. J. Roe, Macromolecules, 23 (1990) 5312.

    Article  CAS  Google Scholar 

  17. W. Brandt, S. Berko, W. W. Walker, Phys. Rev., 120 (1960) 1289.

    Article  CAS  Google Scholar 

  18. R. B. Gregory, Y. Zhu, Nucl. Instr. Meth. Phys. Res., A290 (1990) 172.

    Google Scholar 

  19. A. Shukla, M. Peter, L. Hoffmann, Nucl. Inst. Meth., A335 (1993) 310.

    CAS  Google Scholar 

  20. Y. C. Jean, Microchem. J., 42 (1990) 72.

    Article  CAS  Google Scholar 

  21. M. Eldrup, D. Lightbody, J. N. Sherwood, Chem. Phys., 63 (1981) 51.

    Article  CAS  Google Scholar 

  22. R. Hinek, H. Spiering, D. Schollmeyer, P. Gütlich, A. Hauser, Chem. Eur. J., 2 (1996) 1427.

    CAS  Google Scholar 

  23. A. Vértes, K. Süvegh, R. Hinek, P. Gütlich, J. Phys. Chem. Solids, 55 (1994) 1269.

    Google Scholar 

  24. P. L. Franke, J. G. Haasnoot, A. P. Zuur, Inorg. Chim. Acta, 59 (1982) 5.

    Article  CAS  Google Scholar 

  25. P. Poganiuch, S. Decurtins, P. Gütlich, J. Am. Chem. Soc., 112 (1990) 3270.

    Article  CAS  Google Scholar 

  26. G. Schmitt, M.S. Thesis, Johannes Gutenberg Universität, Mainz, 1989.

    Google Scholar 

  27. M. Bokor, T. Marek, K. Süvegh, K. Tompa, A. Vértes, Zs. Nemes-Vetéssy, K. Burger, J. Radioanal. Nucl. Chem., 211 (1996) 247.

    CAS  Google Scholar 

  28. H. Saito, Y. Nagai, T. Hyodo, K. Süvegh, A. Vértes Mat. Sci. For., 175–178 (1995) 765.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vértes, A., Süvegh, K., Bokor, M. et al. Frontiers of positron and positronium chemistry in condensed media. J Radioanal Nucl Chem 239, 29–36 (1999). https://doi.org/10.1007/BF02349529

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02349529

Keywords

Navigation