Skip to main content
Log in

Performance optimization of k0-INAA

  • Spectroscopy and Softwares
  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A spreadsheet application is developed for the prediction and optimization of the analytical performance of instrumental neutron activation analysis for matrices of more or less known composition. It assists in feasibility testing, sensivitity enhancement and cost reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Simonts, F. De Corte, J. Hoste, J. Radioanal. Chem., 24 (1975) 31.

    Google Scholar 

  2. F. De Corte, A. Simonits, J. Radioanal. Nucl. Chem., 133 (1989) 43.

    Google Scholar 

  3. F. De Corte, A. Simonits, F. Bellemans, M. C. Freitas, S. Jovanovic, B. Smodiš, G. Erdtmann, H. Petri, A. De Wispelare, J. Radioanal. Nucl. Chem., 169 (1989) 125.

    Google Scholar 

  4. P. Robouch, Implementation of Neutron Activation Analysis at IRMM; a feasibility study, Internal Report IRMM, GE/R/SP/04/94. 1994.

  5. F. Hardeman, L. Van Den Durpel, Neutroenenactiveringsanalyse via dek 0-methode, SCK R&D Projectvoorstel, FH/LVDD/fh/94-002.

  6. D. D. Burgess, in: Activation Analysis, Vol. 1,Z. B. Alfassi (Ed.), CRC Press, 1990 Boca Raton, p. 40.

    Google Scholar 

  7. R. Van Sluijs, D. A. W. Bossus, D. Vervecken, Proc. of the Internationalk 0 Users Workshop, Deinze, Belgium, 1992, F. De Corte (Ed., INW, Gent, Belgium, 1992 p. 11.

    Google Scholar 

  8. S. Pommé, F. Hardeman, P. Robouch, N. Etxebarria, Neutron Activation Analysis withk 0-standardisation: General Formalism and Procedure, Internal Report SCK·CEN, to be published.

  9. Lin Xilei, Computer-assisted reactor neutron activation analysis of geological reference materials using thek 0-standardization method, Ph. D. Thesis, University of Ghent, 1981.

  10. Lin Xilei, D. Van Renterghem, F. De Corte, R. Cornelis, J. Radioanal. Nucl. Chem., 133 (1989) 153.

    Google Scholar 

  11. W. Michaelis, Nucl. Instr. Meth., 70 (1969) 253.

    Google Scholar 

  12. A. Simonits, L. Moens, F. De Corte, A. De Wispelaere, A. Elek, J. Hoste, J. Radioanal. Chem., 60 (1980) 461.

    Google Scholar 

  13. K. Debertin, R. G. Helmer, Gamma and X-ray Spectrometry with Semiconductor Detectors, North-Holland, Elsevier Science Publishing Co., Amsterdam, 1988.

    Google Scholar 

  14. M. C. Freitas, F. De Corte, Proc. of the Internationalk 0 Users Workshop, Deinze, Belgium, 1992,F. De Corte (Ed.), (INW, Gent, Belgium, 1992), p. 63.

    Google Scholar 

  15. M. C. Freitas, Ph. D. Thesis, University of Ghent, 1993.

  16. L. A. Currie, Anal. Chem., 40 (1968) 586.

    Google Scholar 

  17. V. P. Guinn, L. Nakazawa, J. C. Leslie, J. Radioanal. Nucl. Chem.. 70 (1982) 513.

    Google Scholar 

  18. H. S. Hsia, V. P. Guinn, J. Radioanal. Nucl. Chem., 112 (1987) 223.

    Google Scholar 

  19. M. A. Al-Mugrabi, N. M. Spyrou, J. Radioanal. Nucl. Chem., 110 (1987) 67.

    Google Scholar 

  20. L. Zikovsky, E. A. Schweikert, Nucl. Instr. Meth., 155 (1978) 279.

    Google Scholar 

  21. G. A. Tyurnin, L. A. Smakhtin, Ind. Lab., 37 (1971) 1574.

    Google Scholar 

  22. M. Fedoroff, Nucl. Instr. Meth., 91 (1971) 173.

    Google Scholar 

  23. M. Fedoroff, J. Radioanal. Nucl. Chem., 15 (1973) 435.

    Google Scholar 

  24. V. P. Guinn, J. Radioanal. Nucl. Chem., 15 (1973) 473.

    Google Scholar 

  25. V. P. Guinn, L. Nakazawa, J. C. Leslie, J. Radioanal. Nucl. Chem.. 84 (1984) 103.

    Google Scholar 

  26. D. D. Burgess, P. Hayumbu, Anal. Chem., 56 (1984) 1440.

    Google Scholar 

  27. M. G. Davydov, A. P. Naumov, Radiochem. Radioanal. Lett., 35 (1978) 77.

    Google Scholar 

  28. E. G. Obrazovskii, V. G. Kostrovskii, E. N. Gilbert, Zh. Anal. Khim., 39 (1984) 617.

    Google Scholar 

  29. M. Okada, Anal. Chim. Acta, 24 (1961) 410.

    Google Scholar 

  30. L. Zikovsky, J. Radioanal. Chem., 22 (1974) 165.

    Google Scholar 

  31. T. L. Isenhour, G. H. Morrison, Anal. Chem., 36 (1964) 1089.

    Google Scholar 

  32. J. I. W. Watterson, J. Radioanal. Chem., 26 (1975) 135.

    Google Scholar 

  33. M. G. Davydov, A. P. Naumov, At. Energy, 40 (1976) 417.

    Google Scholar 

  34. D. D. Burgess, Anal. Chem., 57 (1985) 1433.

    Google Scholar 

  35. D. D. Burgess, J. Radioanal. Nucl. Chem., 110 (1987) 51.

    Google Scholar 

  36. I. Obrusnik, K. Eckschlager, J. Radioanal. Nucl. Chem., 112 (1987) 233.

    Google Scholar 

  37. E. E. Kerre (Ed.), Introduction to the Basic Principles of Fuzzy Set Theory and Some of its Applications, Communication and Cognition, Gent, Belgium, 1992.

  38. J. A. Nelder, R. Mead, Comput. J., 7 (1965) 308.

    Google Scholar 

  39. A. Gustavsson, J.-E. Sundkvist, Anal. Chim. Acta. 167 (1985) 1.

    Google Scholar 

  40. D. L. Massart, A. Dijkstra, L. Kaufman, Evaluation of Optimization of Laboratory Methods and Analytical Procedures, Elsevier, New York, 1978, p. 279.

    Google Scholar 

  41. W. J. Youden, E. H. Steiner, Statistical Manual, Association of Official Analytical Chemists, Benjamin Franklin Station, Washington, D.C., 1975.

    Google Scholar 

  42. L. Moens, J. De Donder, X. Lin, F. De Corte, A. De Wispelaere, A. Simonits, J. Hoste, Nucl. Instr. Meth., 187 (1981) 451.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pommé, S., Hardeman, F., Etxebarria, N. et al. Performance optimization of k0-INAA. J Radioanal Nucl Chem 215, 295–303 (1997). https://doi.org/10.1007/BF02034481

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02034481

Keywords

Navigation